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Preface

This book is a revised and expanded version of the lecture notes for Basic Calculus and other similar courses

offered by the Department of Mathematics, University of Hong Kong, from the first semester of the academic

year 1998-1999 through the second semester of 2006-2007. It can be used as a textbook or a reference book

for an introductory course on one variable calculus.

In this book, much emphasis is put on explanations of concepts and solutions to examples. By reading

the book carefully, students should be able to understand the concepts introduced and know how to answer

questions with justification. At the end of each section (except the last few), there is an exercise. Students

are advised to do as many questions as possible. Most of the exercises are simple drills. Such exercises may

not help students understand the concepts; however, without practices, students may find it difficult to continue

reading the subsequent sections.

Chapter 0 is written for students who have forgotten the materials that they have learnt for HKCEE Mathe-

matics. Students who are familiar with the materials may skip this chapter.

Chapter 1 is on sets, real numbers and inequalities. Since the concept of sets is new to most students, detail

explanations and elaborations are given. For the real number system, notations and terminologies that will

be used in the rest of the book are introduced. For solving polynomial inequalities, the method will be used

later when we consider where a function is increasing or decreasing as well as where a function is convex or

concave. Students should note that there is a shortcut for solving inequalities, using the Intermediate Value

Theorem discussed in Chapter 3.

Chapter 2 is on functions and graphs. Some materials are covered by HKCEE Mathematics. New concepts

introduced include domain and range (which are fundamental concepts related to functions); composition of

functions (which will be needed when we consider the Chain Rule for differentiation) and inverse functions

(which will be needed when we consider exponential functions and logarithmic functions).

In Chapter 3, intuitive idea of limit is introduced. Limit is a fundamental concept in calculus. It is used

when we consider differentiation (to define derivatives) and integration (to define definite integrals). There are

many types of limits. Students should notice that their definitions are similar. To help students understand

such similarities, a summary is given at the end of the section on two-sided limits. The section of continuous

functions is rather conceptual. Students should understand the statements of the Intermediate Value Theorem

(several versions) and the Extreme Value Theorem.

In Chapters 4 and 5, basic concepts and applications of differentiation are discussed. Students who know

how to work on limits of functions at a point should be able to apply definition to find derivatives of “simple”

functions. For more complicated ones (polynomial and rational functions), students are advised not to use

definition; instead, they can use rules for differentiation. For application to curve sketching, related concepts

like critical numbers, local extremizers, convex or concave functions etc. are introduced. There are many easily

confused terminologies. Students should distinguish whether a concept or terminology is related to a function,

to the x-coordinate of a point or to a point in the coordinate plane. For applied extremum problems, students
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should note that the questions ask for global extremum. In most of the examples for such problems, more than

one solutions are given.

In Chapter 6, basic concepts and applications of integration are discussed. We use limit of sums in a specific

form to define the definite integral of a continuous function over a closed and bounded interval. This is to make

the definition easier to handle (compared with the more subtle concept of “limit” of Riemann sums). Since

definite integrals work on closed intervals and indefinite integrals work on open intervals, we give different

definitions for primitives and antiderivatives. Students should notice how we can obtain antiderivatives from

primitives and vice versa. The Fundamental Theorem of Calculus (several versions) tells that differentiation

and integration are reverse process of each other. Using rules for integration, students should be able to find

indefinite integrals of polynomials as well as to evaluate definite integrals of polynomials over closed and

bounded intervals.

Chapters 7 and 8 give more formulas for differentiation. More specifically, formulas for the derivatives of

the sine, cosine and tangent functions as well as that of the logarithmic and exponential functions are given.

For that, revision of properties of the functions together with relevant limit results are discussed.

Chapter 9 is on the Chain Rule which is the most important rule for differentiation. To make the rule

easier to handle, formulas obtained from combining the rule with simple differentiation formulas are given.

Students should notice that the Chain Rule is used in the process of logarithmic differentiation as well as that

of implicit differentiation. To close the discussion on differentiation, more examples on curve sketching and

applied extremum problems are given.

Chapter 10 is on formulas and techniques of integration. First, a list of formulas for integration is given.

Students should notice that they are obtained from the corresponding formulas for differentiation. Next, several

techniques of integration are discussed. The substitution method for integration corresponds to the Chain Rule

for differentiation. Since the method is used very often, detail discussions are given. The method of Integration

by Parts corresponds to the Product Rule for differentiation. For integration of rational functions, only some

special cases are discussed. Complete discussion for the general case is rather complicated. Since Integration

by Parts and integration of rational functions are not covered in the course Basic Calculus, the discussion on

these two techniques are brief and exercises are not given. Students who want to know more about techniques of

integration may consult other books on calculus. To close the discussion on integration, application of definite

integrals to probability (which is a vast field in mathematics) is given.

Students should bear in mind that the main purpose of learning calculus is not just knowing how to perform

differentiation and integration but also knowing how to apply differentiation and integration to solve problems.

For that, one must understand the concepts. To perform calculation, we can use calculators or computer soft-

wares, like Mathematica, Maple or Matlab. Accompanying the pdf file of this book is a set of Mathematica

notebook files (with extension .nb, one for each chapter) which give the answers to most of the questions in the

exercises. Information on how to read the notebook files as well as trial version of Mathematica can be found

at http://www.wolfram.com .

http://www.wolfram.com�
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Chapter 0

Revision

0.1 Exponents

Definition

(1) Let n be a positive integer and let a be a real number. We define an to be the real number given by

an = a · a · · · a︸    ︷︷    ︸
n factors

.

(2) Let n be a negative integer n, that is, n = −k where k is a positive integer, and let a be a real number
different from 0. We define a−k to be the real number given by

a−k =
1
ak .

(3) (i) Let a be a real number different from 0. We define a0 = 1.

(ii) We do not define 00 (thus the notation 00 is meaningless).

Terminology In the notation an, the numbers n and a are called the exponent and base respectively.

Rules for Exponents Let a and b be real numbers and let m and n be integers (when a = 0 or b = 0, we have
to add the condition: m, n different from 0). Then we have

(1) aman = am+n

(2)
am

an = am−n provided that a , 0

(3) (am)n = amn

(4) (ab)n = anbn

(5)
(a
b

)n
=

an

bn provided that b , 0

Exercise 0.1
1. Simplify the following; give your answers without negative exponents.

(a) x6x−3 (b)
x−1y2

z−3

(c)
(
x−2y3

)4
(d)

(
2x2

)−3
y4 ÷

(
x−1y

)2
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0.2 Algebraic Identities and Algebraic Expressions

Identities Let a and b be real numbers. Then we have

(1) (a + b)2 = a2 + 2ab + b2

(2) (a − b)2 = a2 − 2ab + b2

(3) (a + b)(a − b) = a2 − b2

Remark The above equalities are called identities because they are valid for all real numbers a and b.

Caution In general, (a + b)2 , a2 + b2. Note: (a + b)2 = a2 + b2 if and only if a = 0 or b = 0.

Example Expand the following:

(1)
(√

x + 2
)2

(2)
(
x − 5

x

)2

(3)
(√

x2 + 1 + 7
) (√

x2 + 1 − 7
)

Solution

(1)
(√

x + 2
)2

=
(√

x
)2

+ 2
(√

x
)

(2) + 22

= x + 4
√

x + 4

(2)
(
x − 5

x

)2

= x2 − 2(x)
(
5
x

)
+

(
5
x

)2

= x2 − 10 +
25
x2

(3)
(√

x2 + 1 + 7
) (√

x2 + 1 − 7
)

=
(√

x2 + 1
)2 − 72

=
(
x2 + 1

)
− 49

= x2 − 48
�

Example Simplify the following:

(1)
x2 − x − 6

x2 − 6x + 9

(2)
x2

x2 − 1
− 1

(3)
2

x2 + 2x + 1
− 1

x2 − x − 2

(4)
(
x − y−1

)−1

(5)
3 +

6
x

x +
x

x + 1
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Solution

(1)
x2 − x − 6

x2 − 6x + 9
=

(x − 3)(x + 2)
(x − 3)2

=
x + 2
x − 3

(2)
x2

x2 − 1
− 1 =

x2 − (x2 − 1)
x2 − 1

=
1

x2 − 1

(3)
2

x2 + 2x + 1
− 1

x2 − x − 2
=

2
(x + 1)2 −

1
(x + 1)(x − 2)

=
2(x − 2) − (x + 1)

(x + 1)2(x − 2)

=
x − 5

(x + 1)2(x − 2)

(4)
(
x − y−1

)−1
=

(
x − 1

y

)−1

=

(
xy − 1

y

)−1

=
y

xy − 1

(5)
3 +

6
x

x +
x

x + 1

=

3x + 6
x

x (x + 1) + x
x + 1

=

3x + 6
x

x2 + 2x
x + 1

=
3(x + 2)

x
· x + 1

x (x + 2)

=
3(x + 1)

x2 �

FAQ What is expected if we are asked to simplify an expression? For example, in (5), can we give 3x + 3
x2 as

the answer?

Answer There is no definite rule to tell which expression is simpler. For (5), both 3(x + 1)
x2 and 3x + 3

x2 are
acceptable. Use your own judgment. �
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Exercise 0.2

1. Expand the following:

(a) (2x + 3)2 (b) (3x − y)2

(c) (x + 3y)(x − 3y) (d) (x + 3y)(x + 4y)

(e)
(
2
√

x − 3
)2

(f)
(√

x + 5
) (√

x − 5
)

2. Factorize the following:

(a) x2 − 7x + 12 (b) x2 + x − 6
(c) x2 + 8x + 16 (d) 9x2 + 9x + 2
(e) 9x2 − 6x + 1 (f) 5x2 − 5
(g) 3x2 − 18x + 27 (h) 2x2 − 12x + 16

3. Simplify the following:

(a)
x2 − x − 6

x2 − 7x + 12
(b)

x2 + 3x − 4
2 − x − x2

(c)
2x

x2 − 1
÷ 4x2 + 4x

x − 1
(d)

1
x + h

− 1
x

h

0.3 Solving Linear Equations

A linear equation in one (real) unknown x is an equation that can be written in the form

ax + b = 0,

where a and b are constants with a , 0 (in this course, we consider real numbers only; thus a “constant” means
a real number that is fixed or given). More generally, an equation in one unknown x is an equation that can be
written in the form

F(x) = 0 (0.3.1)

Remark To be more precise, F should be a function from a subset of R into R. See later chapters for the
meanings of “function” and “R”.

Definition A solution to Equation (0.3.1) is a real number x0 such that F(x0) = 0.

Example The equation 2x + 3 = 0 has exactly one solution, namely −3
2

.

To solve an equation (in one unknown) means to find all solutions to the equation.

Definition We say that two equations are equivalent if the have the same solution(s).

Example The following two equations are equivalent:

(1) 2x + 3 = 0

(2) 2x = −3

To solve an equation, we use properties of real numbers to transform the given equation to equivalent ones
until we obtain an equation whose solutions can be found easily.
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Properties of real numbers Let a, b and c be real numbers. Then we have

(1) a = b⇐⇒ a + c = b + c

(2) a = b =⇒ ac = bc and ac = bc =⇒ a = b if c , 0

Remark

• =⇒ is the symbol for “implies”. The first part of Property (2) means that if a = b, then ac = bc.

• ⇐⇒ is the symbol for “=⇒ and⇐=”. Property (1) means that if a = b, then a + c = b + c and vice versa,
that is, a = b iff a + c = b + c. In mathematics, we use the shorthand “iff ” to stand for “if and only if ”.

Example Solve the following equations for x.

(1) 3x − 5 = 2(7 − x)

(2) a(b + x) = c − dx, where a, b, c and d are real numbers with a + d , 0.

Solution

(1) Using properties of real numbers, we get

3x − 5 = 2(7 − x)

3x − 5 = 14 − 2x

3x + 2x = 14 + 5

5x = 19

x =
19
5
.

The solution is 19
5

.

FAQ Can we omit the last sentence?

Answer The steps above means that a real number x satisfies 3x − 5 = 2(7 − x) if and only if x =
19
5

.
It’s alright if you stop at the last line in the equation array because it tells that given equation has one and
only one solution, namely 19

5
. �

FAQ What is the difference between the word “solution” after the question and the word “solution” in
the last sentence?

Answer They refer to different things. The first “solution” is solution (answer) to the problem (how to
solve the problem) whereas the second “solution” means solution to the given equation. Sometimes, an
equation may have no solution, for example, x2 + 1 = 0 but the procedures (explanations) to get this
information is a solution to the problem. �

FAQ Can we use other symbols for the unknown?

Answer In the given equation, if x is replaced by another symbol, for example, t, we get the equation
3t−5 = 2(7− t) in one unknown t. Solution to this equation is also 19

5
. In writing an equation, the symbol
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for the unknown is not important. However, if the unknown is expressed in t, all the intermediate steps
should use t as unknown:

3t − 5 = 2(7 − t)
...

t =
19
5 �

(2) Using properties of real numbers, we get

a(b + x) = c − dx

ab + ax = c − dx

ax + dx = c − ab

(a + d)x = c − ab

x =
c − ab
a + d

.
�

Exercise 0.3

1. Solve the following equations for x.

(a) 2(x + 4) = 7x + 2 (b)
5x + 3

2
− 5 =

5x − 4
4

(c) (a + b)x + x2 = (x + b)2 (d)
x
a
− x

b
= c

where a, b and c are constants with a , b.

0.4 Solving Quadratic Equations

A quadratic equation (in one unknown) is an equation that can be written in the form

ax2 + bx + c = 0 (0.4.1)

where a, b, and c are constants and a , 0. To solve (0.4.1), we can use the Factorization Method or the
Quadratic Formula.

Factorization Method The method makes use of the following result on product of real numbers:

Fact Let a and b be real numbers. Then we have

ab = 0⇐⇒ a = 0 or b = 0.

Example Solve x2 + 2x − 15 = 0.

Solution Factorizing the left side, we obtain

(x + 5)(x − 3) = 0.

Thus x + 5 = 0 or x − 3 = 0. Hence x = −5 or x = 3. �
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FAQ Can we write “x = −5 and x = 3”?

Answer The logic in solving the above equation is as follows

x2 + 2x − 15 = 0 ⇐⇒ (x + 5)(x − 3) = 0
⇐⇒ x + 5 = 0 or x − 3 = 0
⇐⇒ x = −5 or x = 3

It means that a (real) number x satisfies the given equation if and only if x = −5 or x = 3. The statement
“x = −5 or x = 3” cannot be replaced by “x = −5 and x = 3”.

To say that there are two solutions, you may write “the solutions are −5 and 3”. Sometimes, we also write
“the solutions are x1 = −5 and x2 = 3” which means “there are two solutions −5 and 3 and they are denoted
by x1 and x2 respectively”.

In Chapter 1, you will learn the concept of sets. To specify a set, we may use “listing” or “description”.
The solution set to an equation is the set consisting of all the solutions to the equation. For the above example,
we may write

• the solution set is {−5, 3} (listing);

• the solution set is {x : x = −5 or x = 3} (description).

When we use and, we mean the listing method. �

Quadratic Formula Solutions to Equation (0.4.1) are given by

x =
−b ±

√
b2 − 4ac
2a

.

Remark b2 − 4ac is called the discriminant of (0.4.1).

(1) If b2 − 4ac > 0, then (0.4.1) has two distinct solutions.

(2) If b2 − 4ac = 0, then (0.4.1) has one solution.

(3) If b2 − 4ac < 0, then (0.4.1) has no (real) solution.

FAQ Why is “(real)” added?

Answer When the real number system is enlarged to the complex number system, (0.4.1) has two complex
solutions if b2 − 4ac < 0. However, these solutions are not real numbers. In this course, we consider real
numbers only. So you may simply say that there is no solution. �

Example Solve the following quadratic equations.

(1) 2x2 − 9x + 10 = 0

(2) x2 + 2x + 3 = 0

Solution

(1) Using the quadratic formula, we see that the equation has two solutions given by

x =
9 ±

√
(−9)2 − 4(2)(10)

2(2)
=

9 ± 1
4

.
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Thus the solutions are 5
2

and 2.

(2) Since 22 − 4(1)(3) = −8 < 0, the equation has no solutions.
�

Example Solve the equation x (x + 2) = x (2x + 3).

Solution Expanding both sides, we get

x2 + 2x = 2x2 + 3x

x2 + x = 0

x (x + 1) = 0

x = 0 or x = −1

The solutions are −1 and 0. �

Remark If we cancel the factor x on both sides, we get x + 2 = 2x + 3 which has only one solution. In canceling
the factor x, it is assumed that x , 0. However, 0 is a solution and so this solution is lost. To use cancellation,
we should write

x (x + 2) = x (2x + 3) ⇐⇒ x + 2 = 2x + 3 or x = 0
...

Example Find the value(s) of k such that the equation 3x2 + kx + 7 = 0 has only one solution.

Solution The given equation has only one solution iff

k2 − 4(3)(7) = 0.

Solving, we get k = ±√84. �

Exercise 0.4

1. Solve the following equations.

(a) 4x − 4x2 = 0 (b) 2 + x − 3x2 = 0
(c) 4x (x − 4) = x − 15 (d) x2 + 2

√
2x + 2 = 0

(e) x2 + 2
√

2x + 3 = 0 (f) x3 − 7x2 + 3x = 0

2. Find the value(s) of k such that the equation x2 + kx + (k + 3) = 0 has only one solution.

3. Find the positive number such that sum of the number and its square is 210.

0.5 Remainder Theorem and Factor Theorem

Remainder Theorem If a polynomial p(x) is divided by x − c, where c is a constant, the remainder is p(c).

Example Let p(x) = x3 + 3x2 − 2x + 2. Find the remainder when p(x) is divided by x − 2.

Solution The remainder is p(2) = 23 + 3(22) − 2(2) + 2 = 18. �

Factor Theorem (x − c) is a factor of a polynomial p(x) if and only if p(c) = 0.
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Proof This follows immediately from the remainder theorem because (x−c) is a factor means that the remainder
is 0. �

Example Let p(x) = x3 + kx2 + x − 6. Suppose that (x + 2) is a factor of p(x).

(1) Find the value of k.

(2) With the value of k found in (1), factorize p(x).

Solution

(1) Since
(
x − (−2)

)
is a factor of p(x), it follows from the Factor Theorem that p(−2) = 0, that is

(−2)3 + k(−2)2 + (−2) − 6 = 0.

Solving, we get k = 4.

(2) Using long division, we get

x3 + 4x2 + x − 6 = (x + 2)(x2 + 2x − 3).

By inspection, we have p(x) = (x + 2)(x + 3)(x − 1). �

FAQ Can we find the quotient (x2 + 2x − 3) by inspection (without using long division)?

Answer The “inspection method” that some students use is called the compare coefficient method. Since the
quotient is quadratic, it is in the form (ax2 + bx + c). Thus we have

x3 + 4x2 + x − 6 = (x + 2)(ax2 + bx + c) (0.5.1)

Comparing the coefficient of x3, we see that a = 1. Similarly, comparing the constant term, we get c = −3.
Hence we have

x3 + 4x2 + x − 6 = (x + 2)(x2 + bx − 3).

To find b, we may compare the x2 term (or the x term) to get

4 = 2 + b,

which yields b = 2.

Remark The compare coefficient method in fact consists of the following steps:

(1) Expand the right side of (0.5.1) to get

ax3 + (2a + b)x2 + (2b + c)x + 2c

(2) Compare the coefficients of the given polynomial with that obtained in Step (1) to get

1 = a

4 = 2a + b

1 = 2b + c

−6 = 2c
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(3) Solve the above system to find a, b and c.
�

Example Factorize p(x) = 2x2 − 3x − 1.

Solution Solving p(x) = 0 by the quadratic formula, we get

x =
−(−3) ±

√
(−3)2 − 4(2)(−1)
2(2)

=
3 ± √17

4
.

By the Factor Theorem, both
(
x − 3 +

√
17

4

)
and

(
x − 3 − √17

4

)
are factors of p(x). Therefore, we have

p(x) = 2
(
x − 3 +

√
17

4

) (
x − 3 − √17

4

)

where the factor 2 is obtained by comparing the leading term (that is, the x2 term). �

FAQ Can we say that p(x) can’t be factorized?

Answer Although p(x) does not have factors in the form (x − c) where c is an integer, it has linear factors as
given above. If the question asks for factors with integer coefficients, then p(x) cannot be factorized as product
of linear factors. �

FAQ Can we use the above method to factorize, for example, p(x) = 6x2 + x − 2 ?

Answer If you don’t know how to factorize p(x) by inspection, you can solve p(x) = 0 using the quadratic
formula (or calculators) to get x =

1
2

or x = −2
3

. Therefore (by the Factor Theorem and comparing the leading
term), we have

p(x) = 6
(
x − 1

2

) (
x +

2
3

)

= (2x − 1)(3x + 2). �

Exercise 0.5

1. For each of the following expressions, use the factor theorem to find a linear factor (x − c) and hence
factorize it completely (using integer coefficients).

(a) x3 − 13x + 12 (b) 2x3 − 7x2 + 2x + 3
(c) 2x3 − x2 − 4x + 3 (d) x3 − 5x2 + 11x − 7

2. Solve the following equation for x.

(a) 2x3 − 9x2 − 8x + 15 = 0 (b) x3 − 2x + 1 = 0
(c) 2x3 − 5x2 + 2x − 15 = 0

0.6 Solving Linear Inequalities

Notation and Terminology Let a and b be real numbers.

(1) We say that b is greater than a, or equivalently, that a is less than b to mean that b − a is a positive
number.
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(2) We write b > a to denote that b is greater than a and we write a < b to denote that a is less than b.

(3) We write b ≥ a to denote that b is greater than or equal to a and we write a ≤ b to denote that a is less
than or equal to b.

A linear inequality in one unknown x is an inequality that can be written in one of the following forms:

(1) ax + b < 0

(2) ax + b ≤ 0

(3) ax + b > 0

(4) ax + b ≥ 0

where a and b are constants with a , 0. More generally, an inequality in one unknown x is an inequality that
can be written in one of the following forms:

(1) F(x) < 0

(2) F(x) ≤ 0

(3) F(x) > 0

(4) F(x) ≥ 0

where F is a function from a subset of R into R.

Definition A solution to an inequality F(x) < 0 is a real number x0 such that F(x0) < 0. The definition also
applies to other types of inequalities.

Example Consider the inequality 2x + 3 ≥ 0. By direct substitution, we see that 1 is a solution and −2 is not a
solution.

To solve an inequality means to find all solutions to the inequality.

Rules for Inequalities Let a, b and c be real numbers. Then the following holds.

(1) If a < b, then a + c < b + c.

(2) If a < b and c > 0, then ac < bc.

(3) If a < b and c < 0, then ac > bc. Note: The inequality is reversed.

(4) If a < b and b ≤ c, then a < c.

(5) If a < b and a and b have the same sign, then 1
a
>

1
b

.

(6) If 0 < a < b and n is a positive integer, then an < bn and n√a < n√b.

Terminology Two numbers have the same sign means that both of them are positive or both of them are negative.

Remark One common mistake in solving inequalities is to apply a rule with the wrong sign (positive or
negative). For example, if c is negative, it would be wrong to apply Rule (2).

Example Solve the following inequalities.

(1) 2x + 1 > 7(x + 3)
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(2) 3(x − 2) + 5 > 3x + 7

Solution

(1) Using rules for inequalities, we get
2x + 1 > 7(x + 3)
2x + 1 > 7x + 21
1 − 21 > 7x − 2x
−20 > 5x
−4 > x.

The solutions are all the real numbers x such that x < −4, that is, all real numbers less than −4.

(2) Expanding the left side, we get
3(x − 2) + 5 = 3x − 1

which is always less than the right side. Thus the inequality has no solution.
�

Exercise 0.6

1. Solve the following inequalities for x.

(a)
1 − x

2
≥ 3x − 7

3
(b) 2(3 − x) ≤ √3(1 − x)

(c)
3x

1 − x
+ 3 < 0 (d)

2x
2x + 3

> 1

0.7 Lines

A linear equation in two unknowns x and y is an equation that can be written in the form

ax + by + c = 0 (0.7.1)

where a, b and c are constants with a, b not both 0. More generally, an equation in two unknowns x and y is an
equation that can be written in the form

F(x, y) = 0, (0.7.2)

where F is a function (from a collection of ordered pairs into R).

Definition An ordered pair (of real numbers) is a pair of real numbers x0, y0 enclosed inside parenthesis:
(x0, y0).

Remark Two ordered pairs (x0, y0) and (x1, y1) are equal if and only if x0 = x1 and y0 = y1. For example, the
ordered pairs (1, 2) and (2, 1) are not equal.

Definition A solution to Equation (0.7.2) is an ordered pair (x0, y0) such that F(x0, y0) = 0.

Example Consider the equation
2x + 3y − 4 = 0.

By direct substitution, we see that (2, 0) is a solution whereas (1, 2) is not a solution.
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Rectangular Coordinate System Given a plane, there is a one-to-one correspondence between points in the
plane and ordered pairs of real numbers (see the construction below). The plane described in this way is called
the Cartesian plane or the rectangular coordinate plane.

First we construct a horizontal line and a vertical line on the plane.
Their point of intersection is called the origin. The horizontal line
is called the x-axis and the vertical line y-axis. For each point P
in the plane we can label it by two real numbers. To this ends, we
draw perpendiculars from P to the x-axis and y-axis. The first per-
pendicular meets the x-axis at a point which can be represented
by a real number a. Similarly, the second perpendicular meets
the y-axis at a point which can be represented by a real number
b. Moreover, the ordered pair of numbers a and b determines P
uniquely, that is, if P1 and P2 are distinct points in the plane, then
the ordered pairs corresponding to P1 and P2 are different. There-
fore, we may identify the point P with the ordered pair (a, b) and
we write P = (a, b) or P(a, b). The numbers a and b are called the
x-coordinate and y-coordinate of P respectively.

-1 1 2 3 4

-1

1

2

3

Figure 0.1

The x- and y-axes divide the (rectangular) coordinate plane into 4 regions (called quadrants):

Quadrant I = {(a, b) : a > 0 and b > 0}, Quadrant II = {(a, b) : a < 0 and b > 0},
Quadrant III = {(a, b) : a < 0 and b < 0}, Quadrant IV = {(a, b) : a > 0 and b < 0}.

Lines in the Coordinate Plane Consider the following equation

Ax + By + C = 0 (0.7.3)

where A, B and C are constants with A, B not both zero. It is not difficult to see that the equation has infinitely
many solutions. Each solution (x0, y0) represents a point in the (rectangular) coordinate plane. The collection
of all solutions (points) form a line, called the graph of Equation (0.7.3). Moreover, every line in the plane can
be represented in this way. For example, if ` is the line passing through the origin and making an angle of 45
degrees with the positive x-axis, then it is the graph of the equation y = x. Although this equation is not in the
form (0.7.3), it can be written as

(1)x + (−1)y + 0 = 0,

that is, x − y = 0.

Terminology If a line ` is represented by an equation in the form (0.7.3), we say that the equation is a general
linear form for `.

Remark In Equation (0.7.3),

(1) if A = 0, then the equation reduces to y = −C
B

and its graph is a horizontal line;

(2) if B = 0, then the equation reduces to x = −C
A

and its graph is a vertical line.
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Example Consider the line ` given by
2x + 3y − 4 = 0 (0.7.4)

For each of the following points, determine whether it lies on ` or not.

(1) A = (4,−1)

(2) B = (5,−2)

Solution

(1) Putting (x, y) = (4,−1) into (0.7.4), we get

L.S . = 2(4) + 3(−1) − 4 = 1

, 0.

Therefore A does not lie on `.

(2) Putting (x, y) = (5,−2) into (0.7.4), we get

L.S . = 2(5) + 3(−2) − 4 = 0

= R.S .

Therefore B lies on `.
�

Example Consider the line ` given by
x + 2y − 4 = 0 (0.7.5)

Find the points of intersection of ` with the x-axis and the y-axis.

Solution

• Putting y = 0 into (0.7.5), we get
x − 4 = 0

from which we obtain x = 4.

The point of intersection of ` with the x-axis is (4, 0).

• Putting x = 0 into (0.7.5), we get
2y − 4 = 0

from which we obtain y = 2.

The point of intersection of ` with the y-axis is (0, 2).
�

Remark The point (4, 0) and (0, 2) are called the x-intercept and y-intercept of ` respectively.

FAQ Can we say that the x-intercept is 4 etc?

Answer Some authors define x-intercept to be the x-coordinate of point of intersection etc. Using this conven-
tion, the x-intercept is 4 and the y-intercept is 2. �
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Definition For a non-vertical line `, its slope (denoted by m` or simply m) is defined to be

m` =
y2 − y1

x2 − x1

where P1(x1, y1) and P2(x2, y2) are any two distinct points lying on `.

Remark The number m` is well-defined, that is, its value is independent of the choice of P1 and P2.

FAQ What is the slope of a vertical line?

Answer The slope of a vertical line is undefined because if P1 = (x1, y1) and P2 = (x2, y2) lie on a vertical line,
then x1 = x2 and so

y2 − y1

x2 − x1
=

y2 − y1

0
which is undefined.

Some students say that the slope is infinity, denoted by∞. However,∞ is not a number; it is just a notation.
Moreover, infinity is ambiguous—does it mean positive infinity (going up, very steep) or negative infinity
(going down, very steep)? �

Example Find the slope of the line (given by) 2x − 5y + 9 = 0.

Solution Take any two points on the line, for example, take P1 = (−2, 1) and P2 = (3, 3). The slope m of the
line is

m =
3 − 1

3 − (−2)
=

2
5
.

FAQ Can we take other points on the line?

Answer You can take any two points. For example, taking A =
(
0, 9

5

)
and B =

(− 9
2
, 0

)
, we get

m =

9
5 − 0

0 − (− 9
2 )

=

9
5
9
2

=
2
5
.

�

Equations for Lines Let ` be a non-vertical line in the coordinate plane.

• Suppose P = (x1, y1) is a point lying on ` and m is the slope of `. Then an equation for ` can be written
in the form

y − y1 = m(x − x1) (0.7.6)

called a point-slope form for `.

Remark Since there are infinitely many points on a line, ` has infinitely many point-slope forms. However,
we also say that (0.7.6) is the point-slope form of `.

FAQ Can we write the equation in the following form?

y − y1

x − x1
= m (0.7.7)

Answer Equation (0.7.7) represents a line minus one point. If you put (x, y) = (x1, y1) into (0.7.7), the

left-side is 0
0

which is undefined. This means that the point (x1, y1) does not lie on L. However, once you
get (0.7.7), you can obtain the point-slope form (0.7.6) easily. �
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• Suppose the y-intercept of ` is (0, b) and the slope of ` is m. Then a point-slope form for ` is

y − b = m(x − 0)

which can be written as
y = mx + b

called the slope-intercept form for `.

Example Find the slope of the line having general linear form 2x + 3y − 4 = 0.

Solution Rewrite the given equation in slope-intercept form:

2x + 3y − 4 = 0

3y = −2x + 4

y = −2
3

x +
4
3

The slope of the line is −2
3

. �

Example Let ` be the line that passes through the points A(1, 3) and B(2,−4). Find an equation in general
linear form for `.

Solution Using the points A and B, we get the slope m of `

m =
3 − (−4)

1 − 2
= −7.

Using the slope m and the point A (or B), we get the point slope form

y − 3 = −7(x − 1). (0.7.8)

Expanding and rearranging terms, (0.7.8) can be written in the following general linear form

7x + y − 10 = 0. �

Parallel and Perpendicular Lines Let `1 and `2 be (non-vertical) lines with slopes m1 and m2 respec-
tively. Then

(1) `1 and `2 are parallel if and only if m1 = m2;

(2) `1 and `2 are perpendicular to each other if and only if m1 · m2 = −1.

Note

• If `1 and `2 are vertical, then they are parallel.

• If `1 is vertical and `2 is horizontal (or the other way round), then they are perpendicular to each other.
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Example Find equations in general linear form for the two lines passing through the point (3,−2) such that
one is parallel to the line y = 3x + 1 and the other is perpendicular to it.

Solution Let `1 (respectively `2) be the line that passes through the point (3,−2) and parallel (respectively
perpendicular) to the given line. It is clear that the slope of the given line is 3. Thus the slope of `1 is 3 and the
slope of `2 is −1

3
. From these, we get the point-slope forms for `1 and `2:

y − (−2) = 3(x − 3) and y − (−2) = −1
3

(x − 3)

respectively. Expanding and rearranging terms, we get the following linear forms

3x − y − 11 = 0 and x + 3y + 3 = 0

for `1 and `2 respectively. �

Exercise 0.7

1. For each of the following, find an equation of the line satisfying the given conditions. Give your answer
in general linear form.

(a) Passing through the origin and (−2, 3).
(b) With slope 2 and passing through (5,−1).
(c) With slope −3 and y-intercept (0, 7).
(d) Passing through (−3, 2) and parallel to 2x − y − 3 = 0.
(e) Passing through (1, 4) and perpendicular to x + 3y = 0.
(f) Passing through (1,−1) and perpendicular to the y-axis.

0.8 Pythagoras Theorem, Distance Formula and Circles

Pythagoras Theorem Let a, b and c be the (lengths of the) sides of a right-angled triangle where c is the
hypotenuse. Then we have

a2 + b2 = c2.

a

b
c

Figure 0.2

Distance Formula Let P = (x1, y1) and Q = (x2, y2). Then the distance PQ between P and Q is

PQ =

√
(x2 − x1)2 + (y2 − y1)2.

P(x1, y1)

Q(x2, y2)

Figure 0.3



18 Chapter 0. Revision

Equation of Circles Let C be the circle with center at C(h, k) and radius r. Then an equation for C is

(x − h)2 + (y − k)2 = r2. (0.8.1)

Proof Let P(x, y) be any point on the circle. Since the distance from P
to the center C is r, using the distance formula, we get

√
(x − h)2 + (y − k)2 = r.

Squaring both sides yields (0.8.1). �
C(h, k)

P(x, y)

Figure 0.4

Example Find the center and radius of the circle given by

x2 − 4x + y2 + 6y − 12 = 0.

Solution Using the completing square method, the given equation can be written in the form (0.8.1).

x2 − 4x + y2 + 6y = 12

(x2 − 4x + 4) + (y2 + 6y + 9) = 12 + 4 + 9

(x − 2)2 + (y + 3)2 = 25

(x − 2)2 + (y − (−3))2 = 52

The center is (2,−3) and the radius is 5. �

FAQ How do we get the number “9” etc (the numbers added to both sides)?

Answer We want to find a number (denoted by a) such that (y2 + 6y + a) is a complete square. That is,

y2 + 6y + a = (y + b)2 (0.8.2)

for some number b. Expanding the right-side of (0.8.2) (do this in your head) and comparing the coefficients
of y on both sides, we get 2b = 6, that is, b = 3. Hence comparing the constant terms on both sides, we get
a = b2 = 9.

Summary a = square of half of the coefficient of y. �

Exercise 0.8
1. For each of the following pairs of points, find the distance between them.

(a) (−3, 4) and the origin (b) (4, 0) and (0,−7)
(c) (7, 5) and (12, 17) (d) (−2, 9) and (3,−1)

2. For each of the following circles, find its radius and center.

(a) x2 + y2 − 4y + 1 = 0 (b) x2 + y2 + 4x − 2y − 4 = 0
(c) 2x2 + 2y2 + 4x − 2y + 1 = 0

3. For each of the following, find the distance from the given point to the given line.

(a) (−2, 3) and the y-axis
(b) the origin and x + y = 1
(c) (1, 2) and 2x + y − 6 = 0



0.9. Parabola 19

0.9 Parabola

The graph of
y = ax2 + bx + c

where a , 0, is a parabola. The parabola intersects the x-axis at two distinct points if b2 − 4ac > 0. It touches
the x-axis (one intersection point only) if b2 − 4ac = 0 and does not intersect the x-axis if b2 − 4ac < 0.

• If a > 0, the parabola opens upward and there is a lowest point (called the vertex of the parabola).

• If a < 0, the parabola opens downward and there is a highest point (vertex).

a > 0

Figure 0.5(a)

a < 0

Figure 0.5(b)

The vertical line that passes through the vertex is called the axis of symmetry because the parabola is symmetric
about this line.

To find the vertex, we can use the completing square method to write the equation in the form

y = a(x − h)2 + k (0.9.1)

The vertex is (h, k) because (x − h)2 is always non-negative and so

• if a > 0, then y ≥ k and thus (h, k) is the lowest point;

• if a < 0, then y ≤ k and thus (h, k) is the highest point.

Example Consider the parabola given by
y = x2 + 6x + 5.

Find its vertex and axis of symmetry.

Solution Using the completing square method, the given equation can be written in the form (0.9.1).

y = x2 + 6x + 5
y = (x2 + 6x + 9) − 9 + 5
y = (x + 3)2 − 4
y =

(
x − (−3)

)2 − 4.

The vertex is (−3,−4) and the axis of symmetry is the line given by x = −3 (the vertical line that passes through
the vertex). �

FAQ In the above example, the coefficient of x2 is 1, what should we do if it is not 1?
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Answer To illustrate the procedure, let’s consider y = 2x2 + 3x− 4. To rewrite the equation in the form (0.9.1),
consider the first two terms and rewrite it in the form a

(
x2 +

b
a

x
)
.

y = 2
(
x2 +

3
2

x
)
− 4

y = 2
(
x2 +

3
2

x +
(3
4

)2 −
(3
4

)2
)
− 4

y = 2
(
x2 +

3
2

x +
(3
4

)2 − 9
16

)
− 4

y = 2
(
x +

3
4

)2 − 9
8
− 4

y = 2
(
x +

3
4

)2 − 41
8 �

Exercise 0.9

1. For each of the following parabolas, find its x-intercept(s), y-intercept and vertex.

(a) y = x2 + 4x − 12 (b) y = −x2 + 6x − 7
(c) y = 2x2 + 2x + 7

0.10 Systems of Equations

A system of two equations in two unknowns x and y can be written as

F1(x, y) = 0
F2(x, y) = 0.

Usually, each equation represents a curve in the coordinate plane. Solving the system means to find all ordered
pairs (x0, y0) such that F1(x0, y0) = 0 and F2(x0, y0) = 0, that is, to find all points P(x0, y0) that lies on the
intersection of the two curves.

To solve a system of two linear equations (with two unknowns x and y)

ax + by + c = 0
dx + ey + f = 0,

we can use elimination or substitution.

Example Solve the following system of equations

2x + 3y = 7 (0.10.1)

3x + 5y = 11 (0.10.2)

Solution

(Elimination) Multiply (0.10.1) and (0.10.2) by 3 and 2 respectively, we get

6x + 9y = 21 (0.10.3)

6x + 10y = 22 (0.10.4)
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Subtracting (0.10.3) from (0.10.4), we get y = 1.

Substituting y = 1 back into (0.10.1) or (0.10.2) and solving, we get x = 2.

The solution to the system is (2, 1).

Remark The point (2, 1) is the intersection point of the lines given by 2x + 3y = 7 and 3x + 5y = 11.

(Substitution) From (0.10.1), we get x =
7 − 3y

2
. Substituting into (0.10.2), we get

3
(

7 − 3y
2

)
+ 5y = 11

3(7 − 3y) + 10y = 22

y = 1

and we can proceed as in the elimination method.

�

To solve a system in two unknowns, with one linear equation and one quadratic equation

ax + by + c = 0
dx2 + exy + f y2 + gx + hy + k = 0

we can use substitution. From the linear equation, we can express x in terms of y (or vice versa). Substituting
into the quadratic equation, we get a quadratic equation in y which can be solved by factorization or by formula.
Substituting the value(s) of y back into the linear equation, we get the corresponding value(s) of x.

Example Solve the following system of equations

x − 2y = 4 (0.10.5)

x2 + y2 = 5 (0.10.6)

Solution From (0.10.5), we get x = 4 + 2y. Substituting into (0.10.6), we get

(4 + 2y)2 + y2 = 5

5y2 + 16y + 11 = 0.

Solving we get y = −1 or y = −11
5

.

Substituting y = −1 into (0.10.5), we get x = 2; substituting y = −11
5

into (0.10.5), we get x = −2
5

.

The solutions to the system are (2,−1) and
(− 2

5
,−11

5

)
. �

Remark

• If we substitute y = −1 into (0.10.6), we get two values of x, one of which should be rejected.

• The solutions are the intersection points of the line x − 2y = 4 and the circle x2 + y2 = 5.

Example Find the point(s) of intersection, if any, of the line and the parabola given by x + y − 1 = 0 and
y = x2 + 2 respectively.
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Solution From the equation of the line, we get y = 1 − x. Putting into the equation of the parabola, we get

1 − x = x2 + 2

0 = x2 + x + 1.

Since ∆ = 12 − 4(1)(1) < 0, the above quadratic equation has no solution. Hence the system

x + y − 1 = 0
y = x2 + 2

has no solution, that is, the line and the parabola do not intersect. �

Exercise 0.10

1. Consider a rectangle with perimeter 28 cm and diagonal 10 cm. Find the length and width of the rectangle.



Chapter 1

Sets, Real Numbers and Inequalities

1.1 Sets

1.1.1 Introduction

Idea of definition A set is a collection of objects.

This is not a definition because we have not defined what a collection is. If we give a definition for collec-
tion, it must involve something that have not been defined. It is impossible to define everything. In mathematics,
set is a fundamental concept that cannot be defined. The idea of definition given above describes what a set is
using daily language. This helps us “understand” the meaning of a set.

Terminology An object in a set is called an element or a member of the set.

To describe sets, we can use listing or description.

[Listing] To denote a set with finitely many elements, we can list all the elements of the set and enclose them by
braces. For example,

{1, 2, 3}
is the set which has exactly three elements, namely 1, 2 and 3.

If we want to denote the set whose elements are the first one hundred positive integers, it is impractical
to write down all the elements. Instead, we write

{1, 2, 3, . . . , 99, 100}, or simply {1, 2, . . . , 100}.

The three dots “. . .”(read “and so on”) means that the pattern is repeated, up to the number(s) listed at
the end.

Suppose in a problem, we consider a set, say {1, 2, . . . , 100}. We may have to refer to the set later many
times. Instead of writing {1, 2, . . . , 100} repeatedly, we can give it a name by using a symbol to represent the
set. Usually, we use small letters (eg. a, b, . . .) to denote objects and capital letters (eg. A, B, . . .) to denote sets.
For example, we may write

• “Let A = {1, 2, . . . , 100}.”
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which means that the set {1, 2, . . . , 100} is given the “name” A. If we want to refer to the set later, we can just
write A. For example,

• “Let A = {1, 2, . . . , 100}. Then 100 is an element of A, but 101 is not an element of A.”

If we consider another set, say {1, 2, 3, 4, 5} and want to give it a name, we must not use the symbol A again,
because in the problem, A always means the set {1, 2, . . . , 100}. For example,

• “Let A = {1, 2, . . . , 100}. Let B = {1, 2, 3, 4, 5}. Then every element of B is also an element of A. But
there are elements of A that are not elements of B.”

Remark The equality sign “=” can be used in several ways as the following examples illustrate.

(1) 1 + 2 = 3.

(2) x2 + 1 = 5.

(3) Let A = {1, 2, 3}.
The equality sign in (1) means equality of two quantities: the quantity on the left and the quantity on the

right are equal.

The equality sign in (2) is an equality in an equation. It is true when x = 2 (for example) and it is not true
when x = 1 (for example). Instead of using the equality sign, some authors use “==”. The equation in (2) may
be written as

(2′) x2 + 1 == 5.

The equality sign in (3) has a different meaning. The sentence in (3) means that the set {1, 2, 3} is denoted
by A. The symbol “=” assigns a name to an object (a set is also an object). The name is written on the left
side and the object on the right side. Instead of using the equality sign, some authors use the symbol “:=”. The
sentence in (3) may be written as

(3′) Let A := {1, 2, 3}.
In this course, we will not use the notations “:=” and “==”. Readers can determine the meaning of “=” from
the context.

Notation Given an object x and a set A, either x is an element of A or x is not an element of A.

(1) If x is an element of A, we write x ∈ A (read “x belongs to A”).

(2) If x is not an element of A, we write x < A (read “x does not belong to A”).

There is a set that has no element. It is called the empty set, denoted by ∅. This is a Scandinavian letter, a
zero 0 together with a slash /.

Definition The set that has no element is called the empty set and is denoted by ∅.
Remark Because the empty set has no element, if we list all the elements of it and enclose “them” by braces,
we get { }. This is an alternative notation for the empty set.

[Description] Another way to denote a set is to describe a common property of the elements of the set, using the
following notation:

{x : P(x)} or {x | P(x)}
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read “the set of all x such that P(x) (is true)”. For example, the set whose elements are the first one
hundred positive integers can be expressed as

(†) {x : x is a positive integer less than 101}

In considering “property”, it is understood that the property applies to a certain collection of objects only.
For example, when we say “an old person” (a person is said to be old if his or her age is 65 or above),
the property of being “old” is applied to people. It is meaningless to say “this is an old atom” (unless we
have a definition which tells whether an atom is old or not).

The property of being a positive integer less than 101 is applied to numbers. In this course, we consider
real numbers only. The set of all real numbers is denoted by R. In considering the set given in (†), it is
understood that x is a real number. To make this explicit, we write

(‡) {x ∈ R : x is a positive integer less than 101}
read “the set of all x belonging to R such that x is a positive integer less than 101”.

Notation

(1) The set of all real numbers is denoted by R.

(2) The set of all rational numbers is denoted by Q.

(3) The set of all integers is denoted by Z.

(4) The set of all positive integers is denoted by Z+.

(5) The set of all natural numbers is denoted by N.

Definition

(1) A rational number is a number that can be written in the form p
q

where p and q are integers and q , 0.

(2) Positive integers together with 0 are called natural numbers.

Remark Some authors do not include 0 as natural number. In that case, N means the set of all positive integers.

Example

(1) To say that 2 is a natural number, we may write 2 ∈ N.

(2) To say that 2 is a rational number, we may write 2 ∈ Q.

Note: The number 2 is a rational number because it can be written as
2
1

or
6
3

etc.

(3) To say that π is not a rational number, we may write π < Q.

Note: π ,
22
7

; the rational number
22
7

is only an approximation to π.

Definition Let A and B be sets. If every element of A is also an element of B and vice versa, then we say that
A and B are equal, denoted by A = B.

Remark

• In mathematics, definitions are important. Students who want to take more courses in mathematics must
pay attention to definitions. Understand the meaning, give examples, give nonexamples.
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• In the definition, the first sentence “Let A and B be sets” describes the setting. The definition for equality
applies to sets only and does not apply to other objects. Of course, we can consider equality of other
objects, but it is another definition.

• In the first sentence “Let A and B be sets”, the use of plural “sets” does not mean that A and B are two
different sets. It also includes the case where A and B are the same set. The following are alternative
ways to say this:

♦ Let A and B be set(s).

♦ Let A be a set and let B be a set.

However, these alternative ways are rather cumbersome and will not be used in most situations.

• Some students may not be familiar with the use of the word “let”. It is used very often in mathematics.
Consider the following sentences:

♦ Let A = {1, 2, 3, 4, 5}.
♦ Let A be a set.

The word “let” appears in both sentences. However, the meanings of “let” in the two sentences are quite
different. In the first sentence, “let” means denote whereas in the second sentence, it means suppose. The
definition for equality of sets can also be stated in the following ways:

♦ Suppose A and B are sets. If every element of A is also an element of B and vice versa, then we say
that A and B are equal.

♦ If A and B are sets and if every element of A is also an element of B and vice versa, then we say that
A and B are equal.

• The definition can also be stated in a way that the assumption that A and B are sets is combined with the
condition for equality of A and B.

♦ If every element of a set A is also an element of a set B and vice versa, then we say that A and B are
equal.

• The definition tells that if A and B are sets having the same elements, then A = B. Conversely, it also tells
that if A and B are sets and A = B, then A and B have the same elements because this is the condition to
check whether A and B are equal. Some mathematicians give the definition using iff:

♦ Let A and B be sets. We say that A and B are equal if and only if every element of A is also an
element of B and vice versa.

• Sometimes, we also give definition of a concept together with its “opposite”. The following is a definition
of equality of sets together with its opposite. In this course, we will use the following format

(a) describe the setting;

(b) give condition(s) for the concept;

(c) give condition(s) for the opposite concept,

whenever it is appropriate.

Definition Let A and B be sets. If every element of A is also an element of B and vice versa, then we say that
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A and B are equal, denoted by A = B. Otherwise, we say that A and B are unequal, denoted by A , B.

Example Let A = {1, 3, 5, 7, 9} and let B = {x ∈ Z : x is a positive odd number less than 10}. Then we have
A = B, that is, A and B are equal. This is because every element of A is also an element of B and vice versa.
Recall: Z is the set of all integers. Thus B is the set of all integers that are positive, odd and less than 10.

Remark To prove that the sets A and B in the above example are equal, we check whether the condition given
in the definition is satisfied. This is called proof by definition.

Example Let A = {1, 3, 5, 7, 9} and let B = {x ∈ Z+ : x is a prime number less than 10}. Then we have A , B.
Recall: Z+ is the set of all positive integers.

Proof The number 9 is an element of A, but it is not an element of B. Therefore, it is not true that every element
of A is also an element of B. Hence we have A , B. �

FAQ In the above two examples, the assertions are quite obvious. Do we need to prove them?

Answer Sometimes, mathematicians also write “obvious” in proofs of theorems. To some people, a result may
be obvious; but, it may not be obvious to other people. If you say obvious, make sure that it is really obvious—
if your classmates ask you why, you should be able to explain to them.

It is impractical to explain everything. In proving theorems or giving solutions to examples, reasons that
are “obvious” will not be given. When you answer questions, you should use your own judgment. �

Remark Because it is impractical (in fact, impossible) to explain everything, discussion below will not be
so detail as that above. If you don’t understand a concept, read the definition again. Try different ways to
understand it. Relate it with what you have learnt. Guess what the meaning is. See whether your guess is
correct if you apply it to examples . . .

Example Let A = {1, 2, 3} and let B = {1, 3, 2}. Then we have A = B.

Proof Obvious (use definition). �

The above example shows that in listing elements of a set, order is not important. It should also be noted
that in listing elements, there is no need to repeat the elements. For example, {1, 2, 3, 2, 1} and {1, 2, 3} are the
same set.

Definition Let A and B be sets. If every element of A is also an element of B, then we say that A is a subset of
B, denoted by A ⊆ B. Otherwise, we say that A is not a subset of B, denoted by A * B.

Note

(1) A ⊆ A.

(2) A = B if and only if A ⊆ B and B ⊆ A.

(3) A * B means that there is at least one element of A that is not an element of B.
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Remark Instead of A ⊆ B, some authors use A ⊂ B to denote A is a subset of B.

Example Let A = {1, 2, 3, 4, 5}, B = {1, 3, 5} and C = {2, 4, 6}.
Then we have B ⊆ A and C * A.

The relation between A, B and C can be described by the dia-
gram shown in Figure 1.1.

1
2

3 6
4

5

Figure 1.1
FAQ For the given sets A, B and C, we also have the following:

(1) A * B

(2) A * C

(3) C * B

(4) B * C

Why are they omitted?

Answer Good and correct observation. Given three sets, there are six ways to pair them up. The example just
illustrates the meaning of ⊆ and *. �

1.1.2 Set Operations

Definition Let A and B be sets.

(1) The intersection of A and B, denoted by A ∩ B, is the set whose elements are those belonging to both A
and B, that is,

A ∩ B = {x : x ∈ A and x ∈ B}.
(2) The union of A and B, denoted by A ∪ B, is the set whose elements are those belonging to either A or B

or both A and B, that is
A ∪ B = {x : x ∈ A or x ∈ B}.

Remark In mathematics, “P or Q” means “either P or Q or both P and Q”.

Example Let A = {2, 3, 5}, B = {2, 5, 6, 8} and C = {1, 2, 3}. Find the following sets.

(1) A ∩ B

(2) A ∪ B

(3) (A ∩ B) ∩C

(4) A ∩ (B ∩C)

Solution

(1) A ∩ B = {2, 5}
(2) A ∪ B = {2, 3, 5, 6, 8}
(3) (A ∩ B) ∩C = {2, 5} ∩ {1, 2, 3}

= {2}
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(4) A ∩ (B ∩C) = {2, 3, 5} ∩ {2}
= {2} �

Note Given any sets A, B and C, we always have

(A ∩ B) ∩C = A ∩ (B ∩C) and (A ∪ B) ∪C = A ∪ (B ∪C).

Thus we may write A ∩ B ∩C and A ∪ B ∪C without ambiguity. We say that set intersection and set union are
associative.

Definition Let A and B be sets. The relative complement of B in A, denoted by A\B or A−B (read “A setminus
(or minus) B”), is the set whose elements are those belonging to A but not belonging to B, that is,

A \ B = {x ∈ A : x < B}.

Example Let A = {a, b, c} and B = {c, d, e}. Then we have A \ B = {a, b}.

For each problem, we will consider a set that is “large” enough, containing all objects under consideration.
Such a set is called a universal set and is usually denoted by U. In this case, all sets under consideration are
subsets of U and they can be written in the form {x ∈ U : P(x)}.

Example In considering addition and subtraction of whole numbers (0, 1, 2, 3, 4, . . .), we may use Z (the set of
all integers) as a universal set.

(1) The set of all positive even numbers can be written as {x ∈ Z : x > 0 and x is divisible by 2}.
(2) The set of all prime numbers can be written as {x ∈ Z : x > 0 and x has exactly two divisors}.

Definition Let U be a universal set and let B be a subset of U. Then the set U \ B is called the complement of
B (in U) and is denoted by B′ (or Bc).

Example Let U = Z+, the set of all positive integers. Let B be the set of all positive even numbers. Then B′ is
the set of all positive odd numbers.

Example Let U = {1, 2, 3, . . . , 12} and let

A = {x ∈ U : x is a prime number}
B = {x ∈ U : x is an even number}
C = {x ∈ U : x is divisible by 3}.

Find the following sets.

(1) A ∪ B

(2) A ∩C

(3) B ∩C

(4) (A ∪ B) ∩C

(5) (A ∩C) ∪ (B ∩C)
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(6) (A ∪ B)′

(7) A′ ∩ B′

Solution Note that
A = {2, 3, 5, 7, 11}
B = {2, 4, 6, 8, 10, 12}
C = {3, 6, 9, 12}.

(1) A ∪ B = {2, 3, 4, 5, 6, 7, 8, 10, 11, 12}
(2) A ∩C = {3}
(3) B ∩C = {6, 12}
(4) (A ∪ B) ∩C = {2, 3, 4, 5, 6, 7, 8, 10, 11, 12} ∩ {3, 6, 9, 12}

= {3, 6, 12}
(5) (A ∩C) ∪ (B ∩C) = {3} ∪ {6, 12}

= {3, 6, 12}
(6) (A ∪ B)′ = {2, 3, 4, 5, 6, 7, 8, 10, 11, 12}′

= {1, 9}
(7) A′ ∩ B′ = {1, 4, 6, 8, 9, 10, 12} ∩ {1, 3, 5, 7, 9, 11}

= {1, 9} �

Remark In the above example, we have

(A ∪ B)′ = A′ ∩ B′ and (A ∪ B) ∩C = (A ∩C) ∪ (B ∩C).

In fact, these equalities are true in general.

Venn Diagrams

A Venn diagram is a very useful and simple device to rep-
resent sets graphically.

In a Venn diagram, the universal set U is usually repre-
sented by a rectangle. Inside this rectangle, subsets of the
universal set are represented by circles, rectangles, or some
other geometrical figures.

A

B

C

U

Figure 1.2

We can use Venn diagrams to obtain useful formulas for set operations.

• In Figure 1.3(a), the portion shaded by horizontal lines represents A ∪ B and that by vertical lines repre-
sents C; thus the portion shaded by both horizontal and vertical lines represents (A ∪ B) ∩C.

• In Figure 1.3(b), the portion shaded by horizontal lines represents A ∩C and that by vertical lines repre-
sents B ∩C; thus the portion shaded by vertical or horizontal lines represents (A ∩C) ∪ (B ∩C).
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A

B

C

U

Figure 1.3(a)

A

B

C

U

Figure 1.3(b)

From the two figures, we see that

(A ∪ B) ∩C = (A ∩C) ∪ (B ∩C).

Venn diagrams help us in a visual way to identify the above formulas. However, in order to prove these formulas
in a rigorous manner, one should use formal mathematical logic.

Proof Using definition of set operations, we have

x ∈ (A ∪ B) ∩C ⇐⇒ x ∈ A ∪ B and x ∈ C

⇐⇒ (x ∈ A or x ∈ B) and x ∈ C

⇐⇒ (x ∈ A and x ∈ C) or (x ∈ B and x ∈ C)

⇐⇒ (x ∈ A ∩C) or (x ∈ B ∩C)

⇐⇒ x ∈ (A ∩C) ∪ (B ∩C)

This means that every element of (A ∪ B) ∩C is also an element of (A ∩C) ∪ (B ∩C) and vice versa. Thus the
two sets are equal. �

Remark For more than three subsets of U, observations obtained from Venn diagrams may not be correct. For
four subsets, we need to draw 3-dimensional Venn diagrams.

Exercise 1.1

1. Let A = {x ∈ U : x ≤ 10}, B = {x ∈ U : x is a prime number} and C = {x ∈ U : x is an even number},
where U = {1, 2, 3, . . . , 19} is the universal set. Find the following sets.

(a) A ∩ B (b) A ∩C
(c) B ∩C (d) A ∪ B
(e) A ∪C (f) B ∪C
(g) A ∪ B ∪C (h) A ∩ B ∩C
(i) (A ∪ B) ∩C (j) (A ∩ B) ∪C
(k) A ∩ B′ (l) A′ ∩ B′

∗2. Let A, B and C be subsets of a universal set U. For each of the following statements, determine whether
it is true or not.
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(a) A − B = A′ ∩ B

(b) (A ∪ B) ∩C = A ∪ (B ∩C)
(c) (A′ ∪ B′) ∩ B = B − A

A statement above is true means that it is true for all possible choices of A, B, C and U. To show that
the statement is false, it is enough to give a counterexample. To show that it is true, you can draw a Venn
diagram to convince yourself; but to be more rigorous, you should use formal mathematical logic.

1.2 Real Numbers

1.2.1 The Number Systems

(1) The numbers 0, 1, 2, 3, . . . are called natural numbers. The set of all natural numbers is denoted by N,
that is,

N = {0, 1, 2, 3, . . .}.
Remark The three dots “. . .” means that the pattern is repeated indefinitely.

FAQ In some books, N is defined to be {1, 2, 3, . . .}. Which one should we follow?

Answer Some authors do not include 0 in N. This is just a convention; once we know the definition, it
will not cause any problem. �

(2) The numbers 0, 1,−1, 2,−2, . . . are called integers. The set of all integers is denoted by Z, that is,

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.

(3) Numbers in the form p
q

where p, q ∈ Z and q , 0 are called rational numbers. The set of all rational
numbers is denoted by Q, that is,

Q =
{ p

q
: p, q are integers, and q , 0

}
.

Note Z ⊆ Q, that is, every integer is a rational number. For example, the integer 2 can be written as 2
1

and is therefore a rational number.

All rational numbers can be represented by decimal numbers that terminate, such as 3
4

= 0.75, or by

non-terminating but repeating decimals, such as 4
11

= 0.363636 · · · .

Numbers that can be represented by non-terminating and non-repeating decimals are called irrational
numbers. For example, π and

√
2 are irrational numbers. The following shows the first 50 decimals of π:

π = 3.14159265358979323846264338327950288419716939937511 . . .

Remark The proof for the fact that π is irrational is difficult.

(4) Rational numbers together with irrational numbers are called real numbers. The set of all real numbers
is denoted by R.
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In R, we have the algebraic operations +,× (and −,÷ also) as well as binary relations <,≤, >,≥. Numbers
greater than (respectively smaller than) 0 are called positive (respectively negative).

Real Number Line Real numbers can be represented by points on a line, called the real number line.

>|

−1
|

0
|

1
|

2
Figure 1.4

Notation The following nine types of subsets of R are called intervals:

[a, b] = {x ∈ R : a ≤ x ≤ b} (1.2.1)

(a, b) = {x ∈ R : a < x < b} (1.2.2)

[a, b) = {x ∈ R : a ≤ x < b} (1.2.3)

(a, b] = {x ∈ R : a < x ≤ b} (1.2.4)

[a,∞) = {x ∈ R : a ≤ x} (1.2.5)

(a,∞) = {x ∈ R : a < x} (1.2.6)

(−∞, b] = {x ∈ R : x ≤ b} (1.2.7)

(−∞, b) = {x ∈ R : x < b} (1.2.8)

(−∞,∞) = R (1.2.9)

where a and b are real numbers with a < b and∞ and −∞ (read “infinity” and “minus infinity”) are just symbols
but not real numbers.

FAQ What are the meaning of∞ and −∞?

Answer Intuitively, you may imagine that there is a point, denoted by ∞, very far away on the right (and −∞
on the left). So (a,∞) is the set whose elements are the points between a and ∞, that is, real numbers greater
than a. �

Remark The notation (a, b), where a < b, has two different meanings. It denotes an ordered pair as well as an
interval. To avoid ambiguity, some authors use ]a, b[ to denote the open interval {x ∈ R : a < x < b}. In this
course, we will not use this notation. Readers can determine the meaning from the context.

Terminology

• Intervals in the form (a, b), [a, b], (a, b] and [a, b) are called bounded intervals and those in the form
(−∞, b), (−∞, b], (a,∞), [a,∞) and (−∞,∞) are called unbounded intervals.

• Intervals in the form (a, b), (−∞, b), (a,∞) and (−∞,∞) are called open intervals. For each of such
intervals, the endpoint(s), if there is any, does not belong to the interval.

• Intervals in the form [a, b], (−∞, b], [a,∞) and (−∞,∞) are called closed intervals. For each of such
intervals, the endpoint(s), if there is any, belongs to the interval.

• Intervals in the form [a, b] are called closed and bounded intervals.
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• A set {a} with exactly one element of R is called a degenerated interval (its length is 0).

• Some authors also include ∅ as an interval (called the empty interval).

In this course, an interval means a nonempty, non-degenerated interval, that is, an infinite subset of R that can
be written in the form (1.2.1), (1.2.2), (1.2.3), (1.2.4), (1.2.5), (1.2.6), (1.2.7), (1.2.8) or (1.2.9).

Example For each of the following pairs of intervals A and B,

(1) A = [1, 5] and B = (3, 10]

(2) A = [−2, 3] and B = (7, 11]

(3) A = [−7,−2) and B = [−2,∞)

• determine whether it is (i) an open interval, (ii) a closed interval , (iii) a bounded interval;

• find A ∩ B and determine whether it is an interval.

• find A ∪ B and determine whether it is an interval.

Solution

(1) Both A and B are not open intervals.

A is a closed interval but B is not a closed interval.

Both A and B are bounded intervals.

A ∩ B = (3, 5]; it is an interval.

A ∪ B = [1, 10]; it is an interval.

(2) Both A and B are not open intervals.

A is a closed interval but B is not a closed interval.

Both A and B are bounded intervals.

A ∩ B = ∅; it is not an interval.

A ∪ B = [−2, 3] ∪ (7, 11]; it is not an interval.

(3) Both A and B are not open intervals.

B is a closed interval but A is not a closed interval.

A is a bounded interval but B is not a bounded interval.

A ∩ B = ∅; it is not an interval.

A ∪ B = [−7,∞); it is an interval. �

1.2.2 Radicals

Definition

(1) Let a and b be real numbers and let q be a positive integer. If aq = b, we say that a is a qth root of b.

Example

(a) −2 is the cube root of −8.

(b) 3 and −3 are the square roots of 9.
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Note

(a) If q is odd, then every real number has a unique qth root.

(b) If q is even, then

(i) every positive real number has two qth roots;

(ii) negative real numbers do not have qth root;

(iii) the qth root of 0 is 0.

(2) Let b be a real number and let q be a positive integer. The principal qth root of b, denoted by q√b, is
defined as follows:

(a) if q is odd, q√b is the unique qth root of b;

(b) if q is even,

(i) q√b is the positive qth root of b if b > 0;

(ii) q√b is undefined b if b < 0;

(iii) q√b is 0 if b = 0.

When q = 2, 2√x is simply written as
√

x.

FAQ Can we write
√

4 = ±2 ?

Answer According to the definition,
√

4 is the principle square root of 4, which is the positive real number
whose square is 4. That is,

√
4 = 2. �

FAQ In solving x2 = 4, we get x = ±2. Is this different from the above question?

Answer To find
√

4 is different from solving x2 = 4.

(a)
√

4 is a uniquely defined real number.

(b) To solve x2 = 4 is to find real numbers whose square is 4. There are two such numbers, namely 2
and −2.

Don’t mix up the two questions. �

Example

(a) 4√81 = 3

(b) 3√−8 = −2

(c)
√

25 =
2√25 = 5

(d)
√

0 =
2√0 = 0

(e) 6√−3 is undefined.

Terminology The symbol q√b is called a radical (q is called the index and b the radicand).

FAQ Is
√

a2 = a always true?

Answer It is true if (and only if) a ≥ 0. If a < 0, we have
√

a2 = −a. �
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(3) Let b be a positive real number. Let p and q be integers where q > 0. We define

b
p
q =

q√
bp,

which is the same as
(

q√b
)p

.

Example 8
2
3 =

3√
82 =

3√64 = 4

Remark Equivalently, we have 8
2
3 =

(
3√8

)2
= 22 = 4.

FAQ Are the rules for exponents on page 1 valid if m and n are rational numbers?

Answer The rules remain valid for rational exponents, provided that the base is positive (this is required in the
definition of b

p
q ). For example, we have bsbt = bs+t, where b > 0 and s, t ∈ Q.

Proof Write s =
m
n

and t =
p
q

where m, n, p, q are integers with q, n > 0. Note that

s =
mq
nq
, t =

np
nq

and s + t =
mq + np

nq
.

By definition (equivalent form), we have

bs =
( nq√

b
)mq

and bt =
( nq√

b
)np

.

Denote α =
nq√b. Then we have

bs · bt = αmq · αnp

= αmq+np

= αnq(s+t)

=
(
αnq)s+t

= bs+t
�

FAQ Can we define b raising to an irrational power? For example, can we define 2π? How?

Answer This is deep question. The idea will be discussed Chapter 8. �

Exercise 1.2

1. Find the following sets.

(a) {x ∈ R : x2 = 2}
(b) {x ∈ R : x ≥ 0 and x2 = 2}
(c) {x ∈ Q : x2 = 2}

2. Let A = [1, 5], B = [3, 9), C = {1, 5} and D = [5,∞). Find
(a) A ∩ B (b) A ∪ B
(c) A −C (d) B ∩C
(e) C − B (f) B −C
(g) B − (B −C) (h) A ∪ D
(i) C ∩ D
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1.3 Solving Inequalities

An inequality in one unknown x can be written in one of the following forms:

(1) F(x) > 0

(2) F(x) ≥ 0

(3) F(x) < 0

(4) F(x) ≤ 0

where F is a function from a subset of R into R.

Definition Consider an inequality in the form F(x) > 0 (the other cases can be treated similarly).

(1) A real number x0 satisfying F(x0) > 0 is called a solution to the inequality.

(2) The set of all solutions to the inequality is called the solution set to the inequality.

To solve an inequality means to find all the solutions to the inequality, or equivalently, to find the solution set.

In this section, we consider polynomial inequalities

anxn + an−1xn−1 + · · · + a1x + a0 < 0 (or > 0, or ≤ 0, or ≥ 0) (1.3.1)

where n ≥ 1 and an , 0.

When n = 1, (1.3.1) is a linear inequality. A revision for solving linear inequalities is given in Chapter 0.
In the following examples, we consider several linear inequalities simultaneously.

Example Find the solution set to the following compound inequality:

1 ≤ 3 − 2x ≤ 9

Solution The inequality means
1 ≤ 3 − 2x and 3 − 2x ≤ 9.

Solving them separately, we get

2x ≤ 2
x ≤ 1

and
−6 ≤ x
−3 ≤ x.

The solution set is {x ∈ R : x ≤ 1 and − 3 ≤ x} = {x ∈ R : −3 ≤ x ≤ 1}. �

Remark Using interval notation, the solution set can be written as [−3, 1].

Example Find the solution set to the following:

2x + 1 < 3 and 3x + 10 < 4.

Give your answer using interval notation.

Solution Solving the inequalities separately, we get

2x < 2
x < 1

and
3x < −6

x < −2.
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Therefore, we have
solution set = {x ∈ R : x < 1 and x < −2}

= {x ∈ R : x < −2}
= (−∞,−2). �

Example Find the solution set to the following:

2x + 1 > 9 and 3x + 4 < 10

Solution Solving the inequalities separately, we get

2x > 8
x > 4

and
3x < 6

x < 2.

The solution set is {x ∈ R : x > 4 and x < 2} = ∅. �

1.3.1 Quadratic Inequalities

A quadratic inequality (in one unknown) is an inequality that can be written in the form

ax2 + bx + c < 0 (or > 0, or ≤ 0, or ≥ 0) (1.3.2)

where a , 0. This corresponds to n = 2 in (1.3.1).

We use an example to describe three methods for solving quadratic inequalities. The first two methods
make use of the following properties of real numbers.

(1) α > 0 and β > 0 =⇒ α · β > 0

(2) α < 0 and β < 0 =⇒ α · β > 0

(3) α > 0 and β < 0 =⇒ α · β < 0

From these we get

(4) α · β > 0 ⇐⇒ (α > 0 and β > 0) or (α < 0 and β < 0)

(5) α · β < 0 ⇐⇒ (α > 0 and β < 0) or (α < 0 and β > 0)

Example Find the solution set to the inequality x2 + 2x − 15 > 0.

Solution

(Method 1) First we factorize the quadratic polynomial:

x2 + 2x − 15 > 0

(x + 5)(x − 3) > 0,

and then apply Property (4):

(x + 5 > 0 and x − 3 > 0) or (x + 5 < 0 and x − 3 < 0)

(x > −5 and x > 3) or (x < −5 and x < 3)

x > 3 or x < −5

The solution set is {x ∈ R : x < −5 or x > 3} = (−∞,−5) ∪ (3,∞).
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(Method 2) By factorization, we have
L.S . = (x + 5)(x − 3).

The left-side is zero when x = −5 or 3. These two points divide the real number line into three intervals:

(−∞,−5), (−5, 3), (3,∞).

In the following table, the first two rows give the signs of (x + 5) and (x − 3) on each of these intervals.
Hence, using Properties (1), (2) and (3), we obtain the signs of (x + 5)(x − 3) in the third row.

x < −5 x = −5 −5 < x < 3 x = 3 x > 3

x + 5 − 0 + + +

x − 3 − − − 0 +

(x + 5)(x − 3) + 0 − 0 +

The solution set is (−∞,−5) ∪ (3,∞).

Remark To determine the sign of (x + 5), first we note that it is 0 when x = −5. Since (x + 5) increases as
x increases, it is positive when x > −5 and negative when x < −5.

(Method 3) The graph of y = x2 +2x−15 is a parabola opening upward
and it cuts the x-axis at x1 = −5 and x2 = 3. To solve the
inequality x2 + 2x − 15 > 0 means to find all x such that
the corresponding points on the parabola has y-coordinates
greater than 0. From the graph, we see that the parabola is
above the x-axis if and only if x < −5 or x > 3. Therefore,
the solution set is (−∞,−5) ∪ (3,∞).
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-15-15
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y = x2 + 2x − 15

Figure 1.5 �

1.3.2 Polynomial Inequalities with degrees ≥ 3

In this section, we consider polynomial inequalities (1.3.1) of degree n ≥ 3. To solve such polynomial inequal-
ities, for example p(x) > 0, we can use methods similar to that for quadratic inequalities. The first step is to
factorize p(x).

Example Factorize the polynomial p(x) = x3 + 3x2 − 4x − 12.

Solution First we try to find a factor of the form (x − c) where c is an integer. For this, we try

c = ±1,±2,±3,±4,±6,±12.

Direct substitution gives p(2) = 0 and so (x − 2) is a factor of p(x). Using long division, we obtain

x3 + 3x2 − 4x − 12 = (x − 2)(x2 + 5x + 6)

and then using inspection we get

x3 + 3x2 − 4x − 12 = (x − 2)(x + 2)(x + 3).
�

In the above procedure, we make use of the following
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Theorem 1.3.1 Let
p(x) = cnxn + cn−1xn−1 + · · · + c1x + c0

be a polynomial of degree n where c0, c1, . . . , cn ∈ Z. Suppose (ax − b) is a factor of p(x) where a, b ∈ Z. Then
a divides cn and b divides c0.

FAQ Can we use Factor Theorem to find all the linear factors?

Answer If some linear factors are repeated more than once, we can’t determine which one is repeated (and also
how many times?). For example, let p(x) = x3 − 3x + 2. Using Factor Theorem, we get linear factors (x − 1)
and (x + 2). It is incorrect to write p(x) = (x − 1)(x + 2). Indeed, we have

p(x) = (x − 1)2(x + 2).

Remark We say that (x − 1) is a factor of p(x) repeated twice. �

Example Find the solution set to the inequality x3 + 3x2 − 4x − 12 ≤ 0.

Solution Factorizing the polynomial p(x) on the left side we obtain

p(x) = x3 + 3x2 − 4x − 12 = (x − 2)(x + 2)(x + 3).

The sign of p(x) can be determined from the following table:

x < −3 x = −3 −3 < x < −2 x = −2 −2 < x < 2 x = 2 2 < x

x − 2 − − − − − 0 +

x + 2 − − − 0 + + +

x + 3 − 0 + + + + +

p(x) − 0 + 0 − 0 +

The solution set is {x ∈ R : x ≤ −3 or − 2 ≤ x ≤ 2} = (−∞,−3] ∪ [−2, 2]. �

FAQ Can we use Method 1 described in Section 1.3.1?

Answer You can use that method. However the “and/or” logic is more complicated. If the degree of the
polynomial is 3, there are 4 cases; if the degree is 4, there are 8 cases. The number of cases doubles if the
degree increases by 1.

For the table method, if the degree increases by 1, the number of factors and the number of intervals increase
by (at most) 1 only. �

FAQ Can we use graphical method?

Answer If you know the graph of y = x3 + 3x2 − 4x − 12,
you can write down the solution immediately. For that,
you need to know the x-intercepts (obtained by factoring
the polynomial) and also the shape of the graph (on which
interval is the graph going up or down?). This will be dis-
cussed in Chapter 5.
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y = x3 + 3x2 − 4x − 12

Figure 1.6 �



1.3. Solving Inequalities 41

Exercise 1.3

1. Solve the following inequalities:

(a) 2x − 3 ≥ 4 + 7x (b) 8(x + 1) − 2 < 5(x − 6) + 7

(c)
x2 − 3x + 7

x2 + 1
< 1 (d) (2x + 7)(5 − 11x) ≤ 0

(e) x2 − 2x − 3 < 0 (f) 2x2 − 3x > 4

(g) 2x2 − 3x < −4 (h)
2x + 3
x − 4

≥ 0

(i)
2x + 3
x − 4

< 1

Note: a
b < 0 is equivalent to a · b < 0.

2. Factorize the following polynomials:

(a) 2x3 + 7x2 − 15x (b) 2x3 + 3x2 − 2x − 3
(c) x3 − x2 − x − 2 (d) x4 − 3x3 − 13x2 + 15x
(e) x4 − 3x3 + x2 + 3x − 2 (f) x4 − x3 + x2 − 3x + 2

3. Solve the following inequalities:

(a) (x − 4)(9 − 5x)(2x + 3) < 0 (b) (x − 3)(2x + 1)2 ≤ 0
(c) x3 − 2x2 − 5x + 6 < 0 (d) −2x3 + x2 + 15x − 18 ≤ 0
(e) x3 − x2 − 5x − 3 > 0 (f) x3 + 3x2 + 5x + 3 ≤ 0
(g) x4 + 2x3 − 13x2 − 14x + 24 > 0 (h) 6x4 + x3 − 15x2 ≤ 0
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Chapter 2

Functions and Graphs

2.1 Functions

Informal definition Let A and B be sets. A function from A into B, denoted by f : A −→ B, is a “rule” that
assigns to each element of A exactly one element of B.

Remark If the sets A and B are understood (or are not important for the problem under consideration), instead
of saying “a function from A into B”, we simply say “a function” and instead of writing f : A −→ B, we simply
write f .

Terminology and Notation The sets A and B are called the domain and codomain of f respectively. The domain
of f is denoted by dom ( f ).

FAQ In the above informal definition, what is the meaning of a rule?

Answer It is difficult to tell what a rule is. The above informal definition describes the idea of a function. There
is a rigorous definition. However, it involves more definitions and notations. Interested readers may consult
books on set theory or foundation of mathematics. �

Notation & Terminology Let f be a function. For each x belonging to the domain of f , the corresponding
element (in the codomain of f ) assigned by f is denoted by f (x) and is called the image of x under f .

Remark Some people write f (x) to denote a function. This notation may be misleading because it also means
an image. However, sometimes for convenience, such notations are used. For example, we write x2 to denote
the square function, that is, the function f (from R into R) given by f (x) = x2.

In this course, most of the functions we consider are functions whose domains and codomains are subsets
of R. A variable that represents the “input numbers” for a function is called an independent variable. A variable
that represents the “output numbers” is called a dependent variable because its value depends on the value of
the independent variable.

Example Consider the function f : R −→ R given by

f (x) = x2 + 2.
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We may also write y = x2 + 2 to represent this function. For each input x, the function gives exactly one output
x2 + 2, which is y. If x = 3, then y = 11; if x = 6, then y = 38 etc. The independent variable is x and the
dependent variable is y.

Example Let g(x) = x2 − 3x + 7. Find the following:

(1) g(10)

(2) g(a + 1)

(3) g(r2)

(4) g(x + h)

(5)
g(x + h) − g(x)

h
Solution

(1) g(10) = 102 − 3(10) + 7
= 77

(2) g(a + 1) = (a + 1)2 − 3(a + 1) + 7
= (a2 + 2a + 1) − 3a − 3 + 7
= a2 − a + 5

(3) g(r2) = (r2)2 − 3(r2) + 7
= r4 − 3r2 + 7

(4) g(x + h) = (x + h)2 − 3(x + h) + 7
= x2 + 2xh + h2 − 3x − 3h + 7

(5)
g(x + h) − g(x)

h
=

[(x + h)2 − 3(x + h) + 7] − (x2 − 3x + 7)
h

=
(x2 + 2xh + h2 − 3x − 3h + 7) − (x2 − 3x + 7)

h

=
2xh + h2 − 3h

h
= 2x + h − 3 �

Exercise 2.1

1. Let f (x) =
x − 5
x2 + 4

. Find the following:

(a) f (2) (b) f (3.5)
(c) f (a + 1) (d) f (

√
a)

(e) f (a2) (f) f (a) + f (1)

2. Let f (x) =
x

x + 1
and g(x) =

√
x − 1. Find the following:

(a) f (1) + g(1) (b) f (2)g(2)

(c) f (3)
g(3)

(d) f (a − 1) + g(a + 1)

(e) f (a2 + 1)g(a2 + 1)
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3. Let f (x) = x2 − 3x + 4. Find and simplify the following:

(a) f (a + b) (b) f (1 + h) − f (1)
h

(c) f (a + h) − f (a)
h

2.2 Domains and Ranges of Functions

To describe a function f , sometimes we just write down the rule defining f , omitting its domain and codomain.

• In this course, the codomain is always taken to be R unless otherwise stated.

• For the domain, it can be determined from the rule defining the function. For example, f (x) =
√

x is
defined for all real numbers x ≥ 0 but undefined for x < 0. Therefore, we may take [0,∞) as the domain
of f . The domain obtained in this way is called the natural domain of the function. For a function that is
described by formula, we always take its domain to be the natural domain unless otherwise stated.

Summary Suppose f is a function described by a formula. Then the domain of f is the set of all real numbers
x such that f (x) is defined.

Remark For functions appeared in many applied problems, we do not take their natural domains. For example,
the area A of a circle (to be more accurate, a circular region) with radius r is given by A(r) = πr2. Although πr2

is defined for all real numbers r, for the area function A, its domain is taken to be {r ∈ R : r > 0} = (0,∞).

FAQ For the above area function, can we take the domain to be [0,∞)?

Answer When the radius is 0, we get a point only. A point may be considered to be a circle, called a degenerated
circle. Under this convention, 0 is included in the domain. In many problems, it doesn’t matter whether we
take (0,∞) or [0,∞) as the domain. �

Example For each of the following functions, find its (natural) domain.

(1) f (x) = x2 + 3;

(2) g(x) =
1

x − 2
;

(3) h(x) =
√

1 + 5x

Solution

(1) Since f (x) = x2 + 3 is defined for all real numbers x, the domain of f is R.

(2) Note that g(x) is defined for all real numbers x except 2.

The domain of g is {x ∈ R : x , 2} = R \ {2}.
Remark The domain can also be written as {x ∈ R : x < 2 or x > 2} = (−∞, 2) ∪ (2,∞).

(3) Note that
√

1 + 5x is defined if and only if 1 + 5x ≥ 0.

The domain of h is {x ∈ R : 1 + 5x ≥ 0} = {x ∈ R : x ≥ −1
5
}

= [−1
5
,∞).

�
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Definition Let f : A −→ B be a function and let S ⊆ A. The image of S under f , denoted by f [S ], is the
subset of B given by

f [S ] = {y ∈ B : y = f (x) for some x ∈ S }.

Note f [S ] is the subset of B consisting of all the images under f of elements in S .

Example

(1) Let f : R −→ R be the function given by f (x) = x2. For S = {1, 2, 3}, we have f [S ] = {1, 4, 9}.
(2) Let f : R −→ R be the function given by f (x) = 2x + 1. For S = [0, 1], we have f [S ] = [1, 3].

Definition Let f : A −→ B be a function. The range of f , denoted by ran ( f ), is the image of A under f , that
is, ran ( f ) = f [A].

Remark By definition, ran ( f ) = {y ∈ B : y = f (x) for some x ∈ A}. The condition

(∗) y = f (x) for some x ∈ A

means that y is an output (image) corresponding to some input (element of A). When A and B are subsets of R,
(∗) means that the equation

y = f (x)

has at least one solution belonging to A.

Example Let f : R −→ R be the function given by f (x) = x2 + 2. Then

(1) 3 belongs to the range of f because f (1) = 3, that is, 3 is the image of 1 under f . In terms of solving
equation, 3 belongs to the range means that the equation 3 = x2 + 1 has solution in R (the domain of f ).
Indeed, the equation has two solutions in R, namely 1 and −1;

(2) 2 belongs to the range because the equation 2 = x2 + 2 has solution in R, namely, 0;

(3) 1 does not belong to the range because the equation 1 = x2 + 2 has no solution in R.

Steps to find range of function To find the range of a function f described by formula, where the domain is
taken to be the natural domain:

(1) Put y = f (x).

(2) Solve x in terms of y.

(3) The range of f is the set of all real numbers y such that x can be solved.

Example For each of the following functions, find its range.

(1) f (x) = x2 + 2

(2) g(x) =
1

x − 2
(3) h(x) =

√
1 + 5x

Solution

(1) Put y = f (x) = x2 + 2.
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Solve for x. x2 = y − 2

x = ±√
y − 2.

Note that x can be solved if and only if y − 2 ≥ 0.

The range of f is {y ∈ R : y − 2 ≥ 0} = {y ∈ R : y ≥ 2}
= [2,∞).

Alternatively, to see that the range is [2,∞), we may
use the graph of y = x2 + 2 which is a parabola. The
lowest point (vertex) is (0, 2). For any y ≥ 2, we can
always find x ∈ R such that f (x) = y. -3 -2 -1 1 2 3
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Figure 2.1

(2) Put y = g(x) =
1

x − 2
.

Solve for x. y =
1

x − 2

x − 2 =
1
y

x =
1
y

+ 2.

Note that x can be solved if and only if y , 0.

The range of g is {y ∈ R : y , 0} = R \ {0}.
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Figure 2.2

(3) Put y = h(x) =
√

1 + 5x. Note that y cannot be negative.

Solve for x. y =
√

1 + 5x, y ≥ 0

y2 = 1 + 5x, y ≥ 0

x =
y2 − 1

5
, y ≥ 0.

Note that x can always be solved for every y ≥ 0.

The range of h is {y ∈ R : y ≥ 0} = [0,∞).

Remark y =
√

1 + 5x =⇒ y2 = 1 + 5x

but the converse is true only if y ≥ 0. �1 2 3

1

2

3

4

Figure 2.3

Example Let f (x) =
√

x + 7 −
√

x2 + 2x − 15. Find the domain of f .

Solution Note that f (x) is defined if and only if x + 7 ≥ 0 and x2 + 2x − 15 ≥ 0.
Solve the two inequalities separately:

• x + 7 ≥ 0
x ≥ −7;
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• x2 + 2x − 15 ≥ 0
(x + 5)(x − 3) ≥ 0 x < −5 x = −5 −5 < x < 3 x = 3 x > 3

x − 3 − − − 0 +

x + 5 − 0 + + +

(x − 3)(x + 5) + 0 − 0 +

thus, x ≤ −5 or x ≥ 3.

Therefore, we have dom ( f ) = {x ∈ R : x ≥ −7 and (x ≤ −5 or x ≥ 3)}
= {x ∈ R : (x ≥ −7 and x ≤ −5) or (x ≥ −7 and x ≥ 3)}
= {x ∈ R : −7 ≤ x ≤ −5 or x ≥ 3}
= [−7,−5] ∪ [3,∞). �

Example Let f (x) =
2x + 1
x2 + 1

. Find the range of f .

Solution
Put y = f (x) =

2x + 1
x2 + 1

.

Solve for x. y =
2x + 1
x2 + 1

yx2 + y = 2x + 1

yx2 − 2x + (y − 1) = 0

x =
2 ± √

4 − 4y(y − 1)
2y

if y , 0, x =
−1
2

if y = 0,

=
1 ±

√
1 − y2 + y

y
if y , 0.

Combining the two cases, we see that x can be solved if and only if 1 − y2 + y ≥ 0, that is, y2 − y − 1 ≤ 0.

The range of f is {y ∈ R : y2 − y − 1 ≤ 0}.

To solve the inequality y2 − y − 1 ≤ 0, first we find the zero of the left-side by quadratic formula to get 1 ± √5
2

.

By the factor theorem and comparing coefficient of y2, we see that y2 − y − 1 =

(
y − 1 − √5

2

) (
y − 1 +

√
5

2

)

y < 1−√5
2 y = 1−√5

2
1−√5

2 < y < 1+
√

5
2 y = 1+

√
5

2 y > 1+
√

5
2

y − 1−√5
2 − 0 + + +

y − 1+
√

5
2 − − − 0 +

y2 − y − 1 + 0 − 0 +

From the table, we see that ran ( f ) =
{
y ∈ R : 1 − √5

2
≤ y ≤ 1 +

√
5

2

}

=
[1 − √5

2
,

1 +
√

5
2

]
�
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Remark To solve the inequality y2 − y − 1 ≤ 0, we
may also use graphical method:

The figure shown is the graph of z = y2−y−1, where
the horizontal and vertical axes are the y-axis and the
z-axis respectively.

Figure 2.4

Exercise 2.2

1. For each of the following functions f , find its domain.

(a) f (x) = x2 − 5 (b) f (x) =
2

5x + 6

(c) f (x) =
1

x2 − 5
(d) f (x) =

1
x2 − 2x − 3

(e) f (x) =
1√

2x − 3
(f) f (x) =

1
1 − 2x

− √x + 3

(g) f (x) =
3

1 − x2 +
√

2x + 5 (h) f (x) =
1√

x2 + 3x − 10

2. For each of the following functions f , find its range.

(a) f (x) = x2 − 5 (b) f (x) = x2 − 2x − 3

(c) f (x) =
2

5x + 6
(d) f (x) = 3 − 1

2x − 1

(e) f (x) =
1√

2x − 3
(f) f (x) =

1
x2 − 5

(g) f (x) =
1

x2 − 2x − 3

3. Consider a rectangle with perimeter 28 (units). Let the width of the rectangle be w (units) and let the
area of the region enclosed by the rectangle be A (square units). Express A as a function of w. State the
domain of A and find the range of A.

2.3 Graphs of Equations

Recall that an ordered pair of real numbers is denoted by (x0, y0) where x0 and y0 are real numbers. The set of
all ordered pairs is denoted byR2 (read “R two”). The superscript 2 indicates that elements inR2 are represented
by two real numbers. Since an ordered pair of real numbers represents a point in the coordinate plane, R2 can
be identified with the plane.

Let f : A −→ R be a function where A ⊆ R2. Each element in the domain of f is an ordered pair (x, y) of
real numbers. Its image under f is denoted by f

(
(x, y)

)
, or simply f (x, y). Functions whose domains are subsets

of R2 are called functions of two variables.

Example Let f : R2 −→ R be the function given by f (x, y) = x + y2. Then we have

(1) f (1, 2) = 1 + 22 = 5

(2) f (2, 1) = 2 + 12 = 3
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Consider an equation in the form
F(x, y) = 0 (2.3.1)

where F is a function of two variables. The set of all ordered pairs (x, y) satisfying (2.3.1) is called the graph
of (2.3.1). That is, the graph is the following subset of R2:

{
(x, y) ∈ R2 : F(x, y) = 0

}
.

Since ordered pairs can be considered as points in the coordinate plane, the graph can be considered as a subset
of the plane.

Example Consider the following equation

2x + 3y − 4 = 0.

(1) Since 2(2) + 3(0) − 4 = 0, the point (ordered pair) P(2, 0) belongs to the graph of the equation.

(2) Since 2(−1) + 3(2) − 4 = 0, point Q(−1, 2) belongs to the graph of the equation.

(3) Since 2(1) + 3(2) − 4 = 4 , 0, the point R(1, 2) does not belong to the graph.

Remark The graph of the equation is the line passing through P and Q.

Definition An x-intercept (respectively a y-intercept) of the graph of an equation F(x, y) = 0 is a point where
the graph intersects the x-axis (respectively the y-axis).

Example The graph of the equation
2x + 3y − 4 = 0 (2.3.2)

is a line. Its x-intercept is (2, 0) and its y-intercept is (0, 4
3

). These are obtained by putting y = 0 and x = 0
respectively into (2.3.2).

Example The graph of the equation

x2 + y2 = 1

is a circle centered at the origin (0, 0) with radius 1.

The graph has two x-intercepts, namely (1, 0) and (−1, 0) and two
y-intercepts, namely, (0, 1) and (0,−1).
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Figure 2.5

Example Find the x-intercept(s) and y-intercept(s) of the graph of

y = x2 − 5x + 6 (2.3.3)

Solution To find the x-intercepts, we put y = 0 in (2.3.3). Solving

0 = x2 − 5x + 6

0 = (x − 2)(x − 3)
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we get x = 2 or x = 3. Thus the x-intercepts are (2, 0) and (3, 0).

To find the y-intercept, we put x = 0 in (2.3.3) and get y = 6. Thus the y-intercept is (0, 6). �

Symmetry Consider the graph of the equation

y = x2.

The graph is a parabola. If (a, b) is a point belonging to the parabola, that is
b = a2, then (−a, b) also belongs to the parabola since b = (−a)2. Note that

• the line segment joining (a, b) and (−a, b) is perpendicular to the y-axis;

• the two points (a, b) and (−a, b) are equidistant from the y-axis (distances
to the y-axis are the same).

We say that the parabola is symmetric about the y-axis.
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Figure 2.6

In general, a subset A of the plane is said to be symmetric about a line ` if the following condition is
satisfied: For any point P belonging to A (but not belonging to `), there is a point Q belonging to A such that

(1) the line segment PQ is perpendicular to `;

(2) P and Q are equidistant from `.

Example The parabola given by x = y2 is symmetric about the x-axis.

Figure 2.7

Example The graph of 2x2 + y2 = 6 is an ellipse. It is symmetric
about the x-axis and also symmetric about the y-axis.
If (a, b) is a point belonging to the ellipse, then the point (−a,−b)
also belongs to the ellipse. Note that

• the line segment joining (a, b) and (−a,−b) passes through
the origin;

• the points (a, b) and (−a,−b) are equidistant from the ori-
gin.

We say that the ellipse is symmetric about the origin.

Figure 2.8

In general, a subset A of the plane is said to be symmetric about a point C if the following condition is
satisfied: For any point P belonging to A (but different from C), there is a point Q belonging to A such that

(1) the line segment PQ passes through C;

(2) P and Q are equidistant from C.
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Example The graph of y = x3 is symmetric about the origin.

Figure 2.9

We close this section with the following example of finding intersection of two curves (in fact, one is a
line). This is the same as solving a system of two equations in two unknowns.

Example Let ℰ and ℒ be the ellipse and the line given by

2x2 + y2 = 6 and x + 2y − 3 = 0

respectively. Find ℰ ∩ ℒ.

Solution We need to solve the following system:

2x2 + y2 = 6 (2.3.4)

x + 2y − 3 = 0 (2.3.5)

From (2.3.5), we get x = 3 − 2y. Putting into (2.3.4) and solving

2(3 − 2y)2 + y2 = 6
2(9 − 12y + 4y2) + y2 = 6

9y2 − 24y + 12 = 0
3(y − 2)(3y − 2) = 0

we get y = 2 or y =
2
3

. Substitute back into (2.3.5), we get (x, y) = (−1, 2) or (5
3
,

2
3

).

Therefore we have ℰ ∩ ℒ =
{
(−1, 2), (5

3
,

2
3

)
}
. �

Exercise 2.3

1. Consider the graph of 2x2 + 3y2 = 4 (which is an ellipse). Find its x- and y-intercepts.

2. Suppose the graph of y = ax2 + bx + c has x-intercepts (2, 0) and (−3, 0) and y-intercept (0,−6). Find a,
b and c.

3. Consider the graph of y = x2 + 4x + 5.

(a) Find its x- and y-intercepts.
(b) Show that the graph lies entirely above the x-axis.

4. Let C = {(x, y) ∈ R2 : x2 + y2 = 5}, E = {(x, y) ∈ R2 : x2 + 2y2 = 6} and L = {(x, y) ∈ R2 : 2x + y− 3 = 0}.
Find the following:

(a) L ∩C (b) L ∩ E (c) C ∩ E

5. Let C = {(x, y) ∈ R2 : x2 + y2 = 1} and L = {(x, y) ∈ R2 : ax + y = 2} where a is a constant. Find the
values of a such that C ∩ L is a singleton (that is, a set with only one element).
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2.4 Graphs of Functions

Let f : A −→ R be a function where A ⊆ R. The graph of f is the following subset of R2:

{
(x, y) ∈ R2 : x ∈ A and y = f (x)

}
.

Example

(1) Constant Functions A constant function is a function f that is given by

f (x) = c,

where c is a constant (a real number).

The domain of every constant function is R.

The range is a singleton: {c}.
The graph is a horizontal line whose y-intercept
is (0, c).

c

Figure 2.10

Remark Let f (x) = x0. Note that for all x , 0, we have f (x) = 1 and that f (0) is undefined. So there is
a small difference between f and the constant function 1 whose domain is R. However, for convenience,
we treat the function x0 as the constant function 1.

In the above discussion, we use the symbol 1 to represent the function with domain and codomain equal
to R and assigning every x ∈ R to the number 1. Thus the symbol 1 has two different meanings. It may be
a function or a number. This abuse of notation is sometimes used in mathematics. Readers can determine
the meaning from the context.

(2) Linear Functions A linear function is a function f given by

f (x) = ax + b,

where a and b are constants and a , 0.

The domain of every linear function is R.

The range is also R (note that a is assumed to be non-zero).

The graph is a line with slope a and y-intercept (0, b).

b

Figure 2.11

(3) Quadratic Functions A quadratic function is a function f given by

f (x) = ax2 + bx + c,

where a, b and c are constants and a , 0.

The domain of every quadratic function is R.

The range is [k,∞) if a > 0 and (−∞, k] if a < 0 where k is the y-coordinate of the vertex.

The graph is a parabola which opens upward if a > 0 and downward if a < 0.
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a > 0

Figure 2.12(a)

a < 0

Figure 2.12(b)

Remark Besides using the completing square method to find the vertex, we can also use differentiation
(see Chapter 5).

(4) Polynomial Functions A function f given by

f (x) = anxn + an−1xn−1 + · · · + a1x + a0,

where a0, a1, . . . , an are constants with an , 0, is called a polynomial function of degree n.

If n = 0, f is a constant function.

If n = 1, f is a linear function.

If n = 2, f is a quadratic function.

Example Let f (x) = x3 − 3x2 + x − 1.

The graph of f is shown in Figure 2.13.

In Chapter 5, we will discuss how to sketch graphs of poly-
nomial functions.
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Figure 2.13

The domain of every polynomial function f is R.

There are three possibilities for the range.

(a) If the degree is odd, then ran ( f ) = R.

(b) If the degree is even and positive, then

(i) ran ( f ) = [k,∞) if an > 0;

(ii) ran ( f ) = (−∞, k] if an < 0,

where k is the y-coordinate of the lowest point for case (i), or the highest point for case (ii), of the
graph.

Remark The constant function 0 is also considered to be a polynomial function. However, its degree is
assigned to be −∞ (for convenience of a rule for degree of product of polynomials).

(5) Rational Functions A rational function is a function f in the form

f (x) =
p(x)
q(x)

,

where p and q are polynomial functions.
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Example Let f (x) =
1
x

.

The domain of f is R \ {0}.
The range of f is also R \ {0}.
The graph consists of two curves, one in the first quadrant
and the other in the third quadrant. It is symmetric about
the origin. This is because f (−x) =

1
−x

= − f (x).
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Figure 2.14

Example Let f (x) =
1
x2 .

The domain of f is R \ {0}.
The range of f is (0,∞).

The graph consists of two curves, one in the first quadrant
and the other in the second quadrant. It is symmetric about
the y-axis. This is because f (−x) =

1
(−x)2 =

1
x2 = f (x).
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Figure 2.15

Example Let f (x) =
2x − 1
x2 + 3

.

The domain of f is R.

The graph of f is shown in Figure 2.16. Note
that when x is very large in magnitude, f (x) is
very small. This is because the degree of the nu-
merator is smaller than that of the denominator.
See Chapter 3 for more details.
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Figure 2.16

The range of f can be found using the method described in Section 2.2. Alternatively, it can be found if
the x-coordinates of the highest and lowest point are known. See Chapter 5 for more details.

(6) Square-root Function

Recall that for each positive real number x, there are two real numbers whose square is x. The two
numbers are called the square roots of x. The principle square root of x, denoted by

√
x, is defined to be

the positive square root of x.

Example The square roots of 9 are 3 and −3. The principle square root of 9 is 3, that is,
√

9 = 3.

By convention, the principle square root of 0 is defined to be 0, that is,
√

0 = 0.

The operation of taking principle square root can be considered as a function. Each nonnegative real
number x can be used as an input and its corresponding output is

√
x.

Definition The principle-square-root function, denoted by sqrt, is the function given by

sqrt (x) =
√

x.
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Remark

• Usually we use a single letter to denote a function. For functions that will be used very often,
we create special notations for them. Usually, we use a few letters, taken from the names of the
functions, to represent the functions.

• For simplicity, the principle-square-root function is also called the square-root function.

• Sometimes, the square-root function is also denoted by
√

x. Thus the notation
√

x can have two
different meanings:

♦ a function (the square-root function)

♦ a real number (the image of x under the square-root function)

• Sometimes, the square-root function is also denoted by
√ · (a dot inside √ ). Thus,

√ · (x) =
√

x.
The position of the dot indicates that the variable is put there.

The domain of the square-root function is [0,∞).

The range is also [0,∞).

The following steps describe how to draw the graph of y =
√

x.

(i) Square both sides to get y2 = x.

The graph pf y2 = x is a parabola opening to the right. It can be obtained from the parabola given
by y = x2 by rotating 90◦ in the clockwise direction. Note that in the two equations, the role of x
and y are interchanged.

(ii) The graph of y =
√

x is the upper half of the parabola obtained in (i).

The lower part is not included because
√

x is always non-
negative. Squaring introduces extra points.

In the equation y =
√

x, it is implied implicitly that x ≥ 0
and y ≥ 0.

The graph of the equation is the following subset of R2:

Graph = {(x, y) ∈ R2 : y =
√

x, x ≥ 0, y ≥ 0}
= {(x, y) ∈ R2 : y2 = x, x ≥ 0, y ≥ 0}
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Figure 2.17

Example For each of the following equations, sketch its graph.

(a) y =
√

x − 2

(b) y =
√

x − 2

(c) y =
√

2 − x

Solution

(a) The graph is a half of a parabola. It is obtained by
moving the graph of y =

√
x two units down.
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Figure 2.18
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Remark Let a be a positive constant.

• The graph of y = f (x) + a can be obtained from that of y = f (x) by moving it a units up.

• The graph of y = f (x) − a can be obtained from that of y = f (x) by moving it a units down.

(b) Note that
√

x − 2 is defined for x ≥ 2 only. The
graph of y =

√
x − 2 is obtained by moving that of

y =
√

x two units to the right.
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Figure 2.19

Remark Let a be a positive constant.

• The graph of y = f (x − a) can be obtained from that of y = f (x) by moving it a units to the
right.

• The graph of y = f (x + a) can be obtained from that of y = f (x) by moving it a units to the left.

(c) Note that
√

2 − x is defined for x ≤ 2 only. The
graph of y =

√
2 − x and that of y =

√
x − 2 are

symmetric with respect to the vertical line x = 2.
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Figure 2.20

In general, two subsets of the plane are said to be symmetric about a line ` if for each point P
belonging to any one of the two sets, there is a point Q belonging to the other set such that either
P = Q belongs to ` or

• the line segment PQ is perpendicular to `;

• P and Q are equidistant from `.
�

(7) Exponential Functions Let b be a positive real number different from 1. The exponential function
with base b, denoted by expb, is the function given by

expb(x) = bx.

The domain of every exponential function is R.

The range of every exponential function is (0,∞).

The y-intercept of the graph of every exponential function is (0, 1). This is because b0 = 1.

Remark

• Because there are infinitely many exponential functions, one for each base, the notation expb, where
b is written as a subscript, indicates that the base is b. Thus, for example, exp2 and exp3 are the
exponential functions with base 2 and 3 respectively.

• Sometimes, for convenience, we also write bx to denote the exponential function with base b.
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Example Consider exp2, the exponential function with base
2. It is the function from R to R given by exp2(x) = 2x.

The graph of exp2 goes up (as x increases) and the rate that
the graph goes up increases as x increases.
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Figure 2.21

Example Consider exp 1
3
, the exponential function with base

1
3

. It is the function from R to R given by exp 1
3
(x) =

(
1
3

)x
.

The graph of exp 1
3

goes down (as x increases).
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Figure 2.22

In Chapter 8, exponential functions will be discussed in more detail.

(8) Logarithmic Function Recall that for every positive real number x, there is a unique real number y
such that 10y = x. Different positive x give different values of y. In this way, we obtain a function defined
for all positive real numbers. This function, denoted by log, is called the common logarithmic function.
For each positive real number x, log(x) is defined to be the unique real number such that 10log(x) = x.
That is, log(x) = y if and only if y = 10x. For simplicity, log(x) is also written as log x.

Remark Sometimes, for convenience, we also write log x to denote the common logarithmic function. So
the notation log x has two different meanings. It can be a function (the log function) or a number (the
image of x under the log function).

The domain of log is (0,∞).

The range is R.

The graph of log is shown in Figure 2.23. As x increases,
the graph goes up. The rate that the graph goes up de-
creases as x increases. Note that the x-intercept is (1, 0).
This is because log 1 = 0.
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Figure 2.23

Remark In Chapter 8, logarithmic functions with bases other than 10 will be considered. Relation be-
tween exponential functions and logarithmic functions will be discussed.

(9) Trigonometric Functions Similar to the common logarithmic function, we use three letters sin, cos
and tan to denote the sine, cosine and tangent functions respectively. Recall that sin(x) is defined to be
the y-coordinate of the point on the unit circle x2 + y2 = 1 corresponding to the angle with measure x
radians. More details on trigonometric functions can be found in Chapter 7.
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For simplicity, we write sin(x) = sin x etc.

• The sine function: sin

The domain of the sine function is R.

The range is [−1, 1].

The graph of the sine function has a waveform as shown in Figure 2.24 (the symbol p stands for the
number π). The graph is symmetric about the origin. This is because sin(−x) = − sin x. The graph
crosses the x-axis infinitely often, at points with x-coordinates 0,±π,±2π, . . .

2p 4p-2p-4p

-1

1

Figure 2.24

The sine function is periodic with period 2π, that is, sin(x + 2π) = sin x for all x ∈ R.

Definition If f is a function such that f (x + p) = f (x) for all x ∈ dom ( f ), where p is a positive
constant, then we say that f is periodic with period p.

• The cosine function: cos

The domain of the cosine function is R.

The range is [−1, 1].

The graph of the cosine function has a waveform. It is symmetric about the y-axis. This is be-
cause cos(−x) = cos x. The graph crosses the x-axis infinitely often, at points with x-coordinates
±π

2
,±3π

2
, . . .

2p 4p-2p-4p

-1

1

Figure 2.25

The cosine function is periodic with period 2π, that is, cos(x + 2π) = cos x for all x ∈ R.

Remark The graph of the cosine function can be obtained by shifting the graph of the sine function
π

2
units to the left. This is because cos x = sin

(
x +

π

2

)
for all x ∈ R.
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(a) The tangent function: tan

Since tan x =
sin x
cos x

, tan x is undefined at x = ±π
2
,±3π

2
, . . .

The domain of the tangent function is R \ {±π2 ,± 3π
2 , . . .}.

The range is R.

The tangent function is periodic with period π, that is,
tan(x + π) = tan x for all x belonging to the domain.

-
p

2

p

2

Figure 2.26

(10) Absolute Value Function The absolute value function, denoted by | · |, is the function from R to R
given by

|x| =



x if x > 0,
0 if x = 0,
−x if x < 0.

For each real number a, the number |a| is called the absolute value of a.

In defining |x|, the domain R is divided into three disjoint subsets, namely (0,∞), {0} and (−∞, 0).

(a) If x ∈ (0,∞) which means x > 0, then |x| is defined to be x.

(b) If x ∈ {0} which means x = 0, then |x| is defined to be 0.

(c) If x ∈ (−∞, 0) which means x < 0, then |x| is defined to be −x.

Functions defined in this way are called piecewise-defined functions.

Remark Unlike most functions, the image of a real number x under the absolute value function | · | is
denoted by |x|. That is, |x| = | · |(x). Readers may compare this with the square-root function

√ · , where√ · (x) =
√

x.

Example

(a) |2| = 2

(b) |−3| = −(−3) = 3

(c) −|2| = −2

(d) −|−3| = −3

(e) |5 − (−7)| = |12| = 12

(f)
∣∣∣|3 − 12| − |7 + 6|

∣∣∣ =
∣∣∣|−9| − |13|

∣∣∣ = |9 − 13| = |−4| = 4

Remark

(a) |a| is always nonnegative.

(b) |a| = |−a|.
(c) |a| is the distance from the point a to 0 on the real number line.
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(d) |a − b| is the distance between a and b.

(e)
√

a2 = |a|.
The domain of | · | is R.

The range is [0,∞).

The graph of the absolute value function a V-shape figure.
It is the union of the following three subsets of R2.

• {(x, y) ∈ R2 : x > 0 and y = x} which is the half-
line in the first quadrant with slope equal to 1, starting
from the origin but not including the origin.

• {(x, y) ∈ R2 : x = 0 and y = 0} which is the point
{0, 0}, that is, the origin.

• {(x, y) ∈ R2 : x < 0 and y = −x} which is the half-line
in the second quadrant with slope equal to −1, starting
from the origin but not including the origin.

1 2-1-2

-2

-1

1

2

Figure 2.27

Remark We may also define the absolute value function in the following ways:

(i) |x| =


x if x ≥ 0,
−x if x < 0.

(ii) |x| =


x if x > 0,
−x if x ≤ 0.

(iii) |x| =


x if x ≥ 0,
−x if x ≤ 0.

In (i) or (ii), the domain R is divided into two disjoint subsets.

In (iii), although R is the union of (−∞, 0] and [0,∞), the two subsets are not disjoint; the number 0
belongs to both. However, this will not cause any problem to define |0| because if we use the first rule,
we get |0| = 0 and if we use the second rule, we get |0| = −0 = 0. We say that |0| is well-defined because
its value does not depend on the choice of the rule.

Example For each of the following equations, sketch its graph.

(a) y = 1 − |x|
(b) y = |x − 1|

Solution

(a) By the definition of the absolute value function, the equation is

y =



1 − x if x > 0,
1 − 0 if x = 0,

1 − (−x) if x < 0.

The graph is shown in Figure 2.28. It consists of the half-line y = 1 − x, x > 0, the point (0, 1) and
the half-line y = 1 + x, x < 0.
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Remark Alternatively, the graph can be obtained as
follows:

• The graph of y = −|x| and that of y = |x| are
symmetric about the x-axis. So the graph of
y = −|x| is an inverted V-shape figure.

• Move the inverted V-shape figure 1 unit up.

1 2-1-2

1

-1

-2

Figure 2.28

(b) The graph of y = |x − 1| is a V-shape figure. It can
be obtained by moving the graph of y = |x| one unit
to the right.

1 2 3-1-2

1

2

Figure 2.29

(11) Piecewise-defined Functions Below we give more examples of piecewise-defined functions.

Example Let f : [−2, 6] −→ R be the function given by

f (x) =



x2 if − 2 ≤ x < 0
2x if 0 ≤ x < 2

4 − x if 2 ≤ x ≤ 6.

For each of the following, find its value:

(a) f (−1)

(b) f
(1

2

)

(c) f (3)

Sketch the graph of f .

Solution

(a) f (−1) = (−1)2 = 1

(b) f
(1

2

)
= 2 · 1

2
= 1

(c) f (3) = 4 − 3 = 1

The graph of f consists of three parts:

• the curve y = x2, −2 ≤ x < 0 (part of a parabola);

• the line segment y = 2x, 0 ≤ x < 2 (excluding the
right endpoint);

• the line segment y = 4 − x, 2 ≤ x ≤ 6. 2 4 6-2

-2

2

4

Figure 2.30

Remark In the figure, the little circle indicates that the point (2, 4) is not included in the graph. The little
dot (which can be omitted) emphasizes that the point (2, 2) is included. �
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The next example shows that piecewise-defined functions can be used in daily life. The piecewise-defined
function in the example is called a step function. It jumps from one value to another.

Example Suppose the long-distance rate for a telephone call from City A to City B is $1.4 for the first
minute and $0.9 for each additional minute or fraction thereof. If y = f (t) is a function that indicates the
total charge y for a call of t minutes’ duration, sketch the graph of f for 0 < t ≤ 4 1

2 .

Solution Note that

f (t) =



1.4 if 0 < t ≤ 1

2.3 if 1 < t ≤ 2

3.2 if 2 < t ≤ 3

4.1 if 3 < t ≤ 4

5.0 if 4 < t ≤ 4 1
2 .

The graph of y = f (t) is shown in Figure 2.31.

1 2 3 4 4.5

1.4

2.3

3.2

4.1

5

Figure 2.31 �

Remark The ceiling of a real number t, denoted by dte, is defined to be the smallest integer greater than
or equal to t. Using this notation, we have

f (t) = 1.4 + 0.9
(dte − 1

)
.

Exercise 2.4
1. For each of the following equations, sketch its graph.

(a) y = 2x − 3 (b) y + 3 = 2(x − 5)
(c) 7x − 5y + 4 = 0 (d) y = |2x − 1| + 5
(e) x2 = y2 (f) y = −x2

(g) y − 2 = −x2 (h) y − 2 = −(x − 3)2

(i) y = x2 + 2x − 3 (j) y =
√

1 − x2

(k) x =
√

y
2. For each of the following equations, use a computer software to sketch its graph.

(a) y = x3 (b) y = x3 − 2x2 − 3x + 4
(c) y = 2x3 − x + 5 (d) y = x3 − 3x2 + 3x − 1
(e) y = −x3 (f) y = −x3 + 2x2 + 3x − 4
(g) y = x4 (h) y = x4 − x3 − x2 + x + 1
(i) y = x4 − 3x3 + 2x2 + x − 1 (j) y = x4 − 4x3 + 6x2 − 4x
(k) y = −x4 (l) y = −x4 − 2x3 + 3x
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Can you generalize the results for graphs of polynomial functions of degree 3, 4, . . . ?

3. Let f (x) =
2x − 1
x2 + 3

. The graph of f is shown on page 55. Note that there is a highest point and a lowest
point. Find the coordinates of these two points. Hint: consider the range of f
The points are called relative extremum points. An easy way to find their coordinates is to use differentiation, see
Chapter 5.

4. An object is thrown upward and its height h(t) in meters after t seconds is given by h(t) = 1 + 4t − 5t2.

(a) When will the object hit the ground?
(b) Find the maximum height attained by the object.

5. The manager of an 80-unit apartment complex is trying to decide what rent to charge. Experience has shown that
at a rent of $20000, all the units will be full. On the average, one additional unit will remain vacant for each $500
increase in rent.

(a) Let n represent the number of $500 increases.
Find an expression for the total revenue R from all the rented apartments.
What is the domain of R?

(b) What value of n leads to maximum revenue?
What is the maximum revenue?

2.5 Compositions of Functions

Consider the function f given by
f (x) = sin2x.

Recall that sin2x = (sin x)2. For each input x, to find the output y = f (x),

(1) first calculate sin x, call the resulted value u;

(2) and then calculate u2.

These two steps correspond to two functions:

(1) u = sin x;

(2) y = u2.

Given two functions, we can “combine” them by letting one function acting on the output of the other.

Definition Let f and g be functions such that the codomain of f is a subset of the domain of g. The composition
of g with f , denoted by g ◦ f , is the function given by

(g ◦ f )(x) = g
(
f (x)

)
. (2.5.1)

The right-side of (2.5.1) is read “g of f of x”.

Figure 2.32 indicates that f is a function from A to B and g is a function from C to D where B ⊆ C.
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For each element x of A (the domain
of f ), its image f (x) is an element of
B. Because B ⊆ C, f (x) is an element
of C which is the domain of g. There-
fore, f (x) can be used an input for the
function g and the output g

(
f (x)

)
is an

element of D. Thus g ◦ f is a function
from A to D.

A

f−→

C

B

g−→

D

Figure 2.32

Remark In the above definition, the condition that codomain of f ⊆ domain of g can be relaxed. In order to
consider g

(
f (x)

)
, we only need f (x) belong to the domain of g. This is satisfied if ran ( f ) ⊆ dom (g).

In the following two examples, the domains of both f and g are equal to R. Therefore we can consider g◦ f
as well as f ◦ g. The first example illustrates how the functions sin x and x2 are used as building blocks for
the more complicated function sin2x (see the discussion preceding the above definition). The second example
shows that composition of functions is not commutative, that is, f ◦ g , g ◦ f in general.

Example Let f : R −→ R and g : R −→ R be given by

f (x) = sin x and g(x) = x2.

Then we have (g ◦ f )(x) = g
(
f (x)

)

= g(sin x)

= (sin x)2 = sin2x.

Example Let f (x) = x2 and g(x) = 2x + 1. Find ( f ◦ g)(x) and (g ◦ f )(x).

Solution By the definition of composition, we have

( f ◦ g)(x) = f (g(x)) = f (2x + 1)

= (2x + 1)2 = 4x2 + 4x + 1

(g ◦ f )(x) = g( f (x)) = g(x2)

= 2x2 + 1.
�

Remark If the range of f is not contained in the domain of g, then we have to restrict f to a smaller set so that
for every x in that set, f (x) belongs to the domain of g. The domain of g ◦ f is taken to be the following:

dom (g ◦ f ) = {x ∈ dom ( f ) : f (x) ∈ dom (g)}.

Example Let f (x) = x + 1 and g(x) =
√

x. Find the domain of g ◦ f .

Solution Note that the domain of f is R and the domain of g is [0,∞). Thus the domain of g ◦ f is

dom (g ◦ f ) = {x ∈ R : x + 1 ∈ [0,∞)}
= {x ∈ R : x ≥ −1}
= [−1,∞).

�
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Remark Alternatively, note that (g ◦ f )(x) =
√

x + 1. Thus we have dom (g ◦ f ) = {x ∈ R : x + 1 ≥ 0}.

Exercise 2.5

1. Let f (x) = x2 + 1 and g(x) = x + 1. Find the following:

(a) ( f ◦ g)(1) (b) (g ◦ f )(1)
(c) ( f ◦ g)(x) (d) (g ◦ f )(x)
(e) ( f ◦ g)(a2) (f) (g ◦ f )(

√
a)

2. For each of the following, find f (x) and g(x) where g(x) is in the form xr with r , 1 such that (g ◦ f )(x)
equals the given expression.

(a)
√

x2 + 1 (b) 1
x + 1

2.6 Inverse Functions

Let f be the function given by f (x) = 2x for x ∈ R. Consider the equation y = f (x), that is,

y = 2x. (2.6.1)

• In Equation (2.6.1), if we put x = x1, we obtain the corresponding value of y, namely y1 = 2x1 . The
number x1 is an input of the function f and the value y1 is the corresponding output.

• Now we consider the reverse problem. If we put y = y1, can we find a real number x1 such that 2x1 = y1?

(1) If y1 ≤ 0, there is no solution because 2x is always positive.

(2) If y1 > 0, there is exactly one solution because f is injective (see definition below) and its range is
(0,∞).

Definition Let f be a function. We say that f is injective if the following condition is satisfied:

(∗) x1, x2 ∈ dom ( f ) and x1 , x2 =⇒ f (x1) , f (x2).

Condition (∗) means that different elements of the domain are mapped to different elements of the codomain.
It is equivalent to the following condition:

(∗∗) x1, x2 ∈ dom ( f ) and f (x1) = f (x2) =⇒ x1 = x2.

Example Let f (x) = 2x. The domain of f is R. The function f is injective. This is because if x1, x2 ∈ R and
x1 , x2, then 2x1 , 2x2 .

Example Let g(x) = x2. The domain of g is R. The function g is not injective. This is because −1 , 1 (both
are elements of R), but g(−1) = g(1).

To show that a function f is injective, we have to consider all x1, x2 belonging to the domain with x1 , x2

and check that f (x1) , f (x2). However, to show that a function g is not injective, it suffices to find two different
elements x1, x2 of the domain such that g(x1) = g(x2). Below we give a geometric method to determine whether
a function is injective or not.

Horizontal Line Test Let f : X −→ R be a function where X ⊆ R. Then f is injective if and only if every
horizontal line intersects the graph of f in at most one point.
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Example The following two figures show the
graphs of f and g in the last two examples. It
is easy to see from the Horizontal Line Test
that f is injective whereas g is not injective.

1 2-1-2

1

2

3

4

1 2-1-2

1

2

3

4f (x) = 2x g(x) = x2

injective not injective

Figure 2.33 Figure 2.34

Let f be an injective function. Then given any element y of ran ( f ), there is exactly one element x of
dom ( f ) such that f (x) = y. This means that if we use an element y of ran ( f ) as input, we get one and only one
output x. The function obtained in this way is called the inverse of f .

Definition Let f : X −→ Y be an injective function and let Y1 be the range of f . The inverse (function) of
f , denoted by f −1, is the function from Y1 to X such that for every y ∈ Y1, f −1(y) is the unique element of X
satisfying f

(
f −1(y)

)
= y.

The following figure indicates a function f from a set X to
a set Y . Assuming that f is injective, for each y belonging
to the range of f , there is one and only one element x of X
such that f (x) = y. This element x is defined to be f −1(y).
That is,

f −1(y) = x if and only if f (x) = y.

Remark

(1) For every x ∈ X, we have ( f −1 ◦ f )(x) = x.
For every y ∈ Y1, we have ( f ◦ f −1)(y) = y.

(2) f −1 is injective and ( f −1)−1(x) = f (x) for all x ∈
dom ( f ).

X

x • • y

>

<

f

f −1

Y

Figure 2.35

Steps to find inverse functions

Let f : X −→ R be an injective function where X ⊆ R. To find the inverse function of f means to find the
domain of f −1 as well as a formula for f −1(y). If the formula for f (x) is not very complicated, dom ( f −1) and
f −1(y) can be found by solving the equation y = f (x) for x.

(Step 1) Put y = f (x).

(Step 2) Solve x in terms of y. The result will be in the form x = an expression in y.

(Step 3) From the expression in y obtained in Step 2, the range of f can be determined. This is the domain of
f −1. The required formula is f −1(y) = the expression in y obtained in Step 2.

Remark Steps 1 and 2 can be used to find range of a function. If the function is not injective, the expression in
y obtained in Step 2 does not give a function; some y give more than one values of x.
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Example Let f (x) = 2x3 + 1. Find the inverse of f .

Solution The domain of f is R. It is not difficult to show that f is injective and that the range of f is R. These
two facts can also be seen from the following steps:

Put y = f (x). That is, y = 2x3 + 1.

Solve for x: y − 1 = 2x3

y − 1
2

= x3

3
√

y − 1
2

= x (x can be solved for all real numbers y)

Thus we have dom ( f −1) = R and f −1(y) =
3

√
y − 1

2
. �

Example Let g : [0,∞) −→ R be the function given by g(x) = x2. Find the inverse of g.

Solution Because the domain of g is [0,∞), the function g is injective . Moreover, the range of g is [0,∞).
These two facts can also be seen from the following steps:

Put y = g(x). That is, y = x2. Note that y ≥ 0 and that x ≥ 0 since x ∈ dom ( f ).

Solve for x: y = x2, y ≥ 0, x ≥ 0
√

y = x (x can be solved if and only if y ≥ 0, x = −√y is rejected)

Thus we have dom (g−1) = [0,∞) and g−1(y) =
√

y. �

Remark Usually, we use x to denote the independent variable of a function. For the above examples, we may

write f −1(x) =
3
√

x − 1
2

and g−1(x) =
√

x.

Caution f −1(x) ,
1

f (x)

Remark We use sin−1 or arcsin to denote the inverse of sin etc.
Although the sine function is not injective, we can make it injec-
tive by restricting the domain to [−π2 , π2 ].

x = sin−1 y means sin x = y and −π2 ≤ x ≤ π
2 . The domain of

sin−1 is [−1, 1] because −1 ≤ sin x ≤ 1.

-
p

2

p

2

1

-1

y = sin x

Figure 2.36

FAQ Why do we use the notation f −1?

Answer The following example gives a reason why we use such a notation. Let f (x) = 2x. Then f is injective
and its inverse is given by f −1(x) =

1
2

x. The multiplicative constant 1
2

is 2−1.

Another reason is to have the “index law” (details omitted):

f m ◦ f n = f m+n for m, n ∈ Z.
�
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Graph of the inverse function

Let f : X −→ R be a function, where X ⊆ R. Then its graph is a subset of the plane. If, in addition, f is
injective, then f has an inverse and dom ( f −1) ⊆ R. Hence the graph of f −1 is also a subset of the plane. There
is a nice relationship between the graph of f and that of f −1:

(∗) The graph of f and the graph of f −1 are symmetric about the line x = y.

Reason Suppose P(a, b) belongs to the graph of f . This means that b = f (a) or equivalently, a = f −1(b). Thus
Q(b, a) belongs to the graph of f −1. It is straightforward to show that the line segment PQ is perpendicular to
the line y = x (denoted by `) and that P and Q are equidistant from `. �

1 2

1

2 y = x2

y =
√

x

Figure 2.37

Figure 2.37 is an illustration for (∗). The function f : [0,∞) −→ R given by f (x) = x2 is injective. Its range is
[0,∞). The domain of f −1 is [0,∞) and f −1(x) =

√
x.

Exercise 2.6

1. For each of the following functions f , determine whether it is injective or not.

(a) f (x) = x3 + 2x (b) f (x) = x2 − 5

2. For each of the following functions f , find its inverse.

(a) f (x) = 3x − 2 (b) f (x) = x5 + 3

(c) f (x) = 1 + 2x
1
7 (d) f (x) =

3√
2x3 − 1

2.7 More on Solving Equations

In this section, we will consider fractional equations and radical equations. In solving equations, if there is a
one-sided implication (=⇒) in any one of the steps, we have to check solution. If all the steps are two-sided
implications (⇐⇒), there is no need to check solution.

Example For each of the following equations, find its solution set.

(1)
5

x − 2
=

10
x + 3

(2)
x

x − 1
+

2
x

=
1

x2 − x

Solution
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(1) Multiplying both sides of the given equation by (x − 2)(x + 3), we get

5
x − 2

=
10

x + 3

5
x − 2

· (x − 2)(x + 3) =
10

x + 3
· (x − 2)(x + 3)

5(x + 3) = 10(x − 2)

5x + 15 = 10x − 20

35 = 5x

x = 7

By direct substitution, we see that 7 is the solution to the given equation.

The solution set is {7}.

(2) Multiplying both sides by x(x − 1) which is the LCM of the denominators of the terms appearing in the
equation, we get

x
x − 1

+
2
x

=
1

x2 − x
(

x
x − 1

+
2
x

)
· x(x − 1) =

1
x2 − x

· x(x − 1)

x2 + 2(x − 1) = 1 (2.7.1)

x2 + 2x − 3 = 0

(x − 1)(x + 3) = 0

x = 1 or x = −3

By direct substitution, we see that −3 is a solution but 1 is not a solution to the given equation.

The solution set is {−3}. �

FAQ Why do we need to check solution?

Answer When we multiply both sides by x(x−1), extra solutions may be introduced. Solutions to (2.7.1)
may not be solutions to the original equation. This is because

a = b =⇒ ac = bc, but the converse is true only if c , 0.

�

FAQ Can we add some conditions on x so that the implication can go backward?

Answer In the given equation, it is understood that x , 0 and x , 1. This is because the domain of both
f (x) =

x
x − 1

+
2
x

(the left-side) and g(x) =
1

x2 − x
(the right-side) are R \ {0, 1}. Adding the conditions

x , 0 and x , 1, each step below is a two-sided implication:

x
x − 1

+
2
x

=
1

x2 − x
⇐⇒ x2 + 2(x − 1) = 1 and x , 0 and x , 1

...

⇐⇒ (x − 1)(x + 3) = 0 and x , 0 and x , 1

⇐⇒ x = −3.
�
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Example For each of the following equations, find its solution set.

(1)
√

x2 − 7 + x = 7

(2)
√

x − √x − 3 = 3

Solution

(1) Rearranging terms and squaring both sides, we get
√

x2 − 7 + x = 7
√

x2 − 7 = 7 − x

x2 − 7 = (7 − x)2

x2 − 7 = 49 − 14x + x2

−56 = −14x

x = 4

By direct substitution, we see that 4 is the solution to the given equation.

The solution set is {4}.

(2) Rearranging terms and squaring both sides, we get

√
x −
√

x − 3 = 3
√

x − 3 =
√

x − 3 (2.7.2)(√
x − 3

)2
= x − 3 (2.7.3)

x − 6
√

x + 9 = x − 3

−6
√

x = −12
√

x = 2

x = 4

By direct substitution, we see that 4 is not a solution to the given equation.

The equation has no solution. The solution set is ∅. �

FAQ Why do we need to check solution?

Answer When we square both sides of an equation, extra solutions may be introduced. Solutions to (2.7.3)
may not be solutions to (2.7.2). This is because

a = b =⇒ a2 = b2, but the converse is true only if a and b have the same sign.

�

FAQ Can we add some conditions so that the implication can go backward?

Answer In the equation, it is understood that x ≥ 0 and x − 3 ≥ 0. Moreover, it is also understood that
√

x ≥ 3.
This can be seen easily from (2.7.2) Simplifying the three conditions: x ≥ 0, x ≥ 3 and x ≥ 9, we get x ≥ 9.
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Adding this condition, each step below is a two-sided implication:

√
x − √x − 3 = 3 ⇐⇒ √

x − 3 =
√

x − 3

⇐⇒ (√
x − 3

)2
= x − 3 and x ≥ 9

⇐⇒ x − 6
√

x + 9 = x − 3 and x ≥ 9

...

⇐⇒ √
x = 2 and x ≥ 9

⇐⇒ x = 4 and x ≥ 9

From this we see that there is no solution. �

Exercise 2.7

1. For each of the following equations, find its solution set.

(a) (2x + 1)(x − 2) = x(x + 2) (b) (2x + 1)(x − 2) = x(x − 2)

(c) 1
x + 1

=
2

x + 2
(d) x

x + 2
− x

x − 2
=
−4x

x2 − 4

(e) 3 − √2x + 5 = 0 (f)
√

x2 − 9 + x = 9

(g)
√

x2 − 9 + 9 = x (h)
√

x + 5 + 1 = 2
√

x

(i) x6 − 9x3 + 8 = 0

2. Let C(q) = 2q + 12 be the cost to produce q units of a product and let R(q) = 10q − q2 be the revenue.

(a) Find the profit (function).
(b) Find the break-even quantity.

3. The stopping distance y in feet of a car traveling at x mph is described by the equation

y = 0.056057x2 + 1.06657x.

(a) Find the stopping distance for a car traveling at 35 mph.
(b) How fast can one drive if one needs to be certain of stopping within 200 ft?

4. Find the right-angle triangle such that the sides adjacent to the right angle differ by 1 unit and the perime-
ter is 12 units.



Chapter 3

Limits

Calculus is the study of differentiation and integration (this is indicated by the Chinese translation of “calcu-
lus”). Both concepts of differentiation and integration are based on the idea of limit. In this chapter, we use an
intuitive approach to consider limits, omitting the more difficult ε-δ definition.

3.1 Introduction

In this section, we introduce the idea of limit by considering two problems. The first problem is to “find” the
velocity of an object at a particular instant. The idea is related to differentiation. The second problem is to
“find” the area under the graph of a curve (and above the x-axis). The idea is related to integration.

Problem 1 Suppose an object moves along the x-axis and its displacement (in meters) s at time t (in seconds)
is given by

s(t) = t2, t ≥ 0.

We want to consider its velocity at a certain time instant, say at t = 2.

Idea Velocity (or speed) is defined by

velocity =
distance traveled

time elapsed
(3.1.1)

(3.1.1) can only be applied to find average velocities over time intervals.
We (still) don’t have a definition for velocity at t = 2.

time

distance

Figure 3.1

To define the velocity at t = 2, we consider short time intervals
about t = 2, say from t = 2 to t = 2 +

1
2n . Using (3.1.1), we

can compute the average velocity over the time intervals [2, 2.5],
[2, 2.25] etc.

n Time interval Velocity

1 [2,2.5] 4.5 m/s

2 [2,2.25] 4.25 m/s

3 [2,2.125] 4.125 m/s

4 [2,2.0625] 4.0625 m/s

...
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In general, the velocity vn over the time interval
[
2, 2 +

1
2n

]
is

vn =
(2 + 1

2n )2 − 22

1
2n

=
4 + 2 · 2 · 1

2n +
(

1
2n

)2 − 4
1
2n

= 4 +
1
2n .

It is clear that if n is very large (that is, if the time interval is very short), vn is very close to 4. The velocity,
called the instantaneous velocity, at t = 2 is (defined to be) 4.

Problem 2 Find the area of the region that lies under the curve y = x2 and
above the x-axis for x between 0 and 1.

1

1

Figure 3.2

Idea Similar to the idea in Problem 1, we use approximation to find/define
area. First we divide the interval [0, 1] into finitely many subintervals of equal
lengths: [

0, 1
n

]
,

[
1
n
,

2
n

]
,

[
2
n
,

3
n

]
, . . . ,

[
n − 1

n
, 1

]
.

For each subinterval
[ i − 1

n
,

i
n

]
, we consider the rectangular region with base on

the subinterval and height
(

i − 1
n

)2
(the largest region that lies under the curve).

If we add the area of these rectangular regions, the sum is smaller than that of
the required region. However, if n is very large, the error is very small and we
get a good approximation for the required area. 1

1

Figure 3.3

The following table gives the sum S n of the areas of the rectangular regions (correct
to 3 decimal places) for several values of n.

In general, if there are n subintervals, the sum S n is

S n =
1
n
· 02 +

1
n
·
(
1
n

)2

+
1
n
·
(
2
n

)2

+ · · · + 1
n
·
(
n − 1

n

)2

=
12 + 22 + · · · + (n − 1)2

n3

=
n(n − 1)(2n − 1)

6n3 By Sum of Squares Formula

=
2n3 − 3n2 + n

6n3

=
1
3
− 1

2n
+

1
6n2

n Sum of areas

2 0.125

3 0.185

4 0.219

...

10 0.285

...

100 0.328

...

500 0.332

It is clear that if n is very large (so that the error is small), S n is very close to 1
3

.
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Conclusion The area of the region is 1
3

.

Sum of Squares Formula 12 + 22 + · · · + n2 =
n(n + 1)(2n + 1)

6

Exercise 3.1
∗1. In the first problem: If we consider short time intervals other than

[
2, 2 +

1
2n

]
, for example consider

[
2, 2 +

1
n

]
or

[
2 − 1

n2 , 2
]
, do we get the same result?

∗2. In the second problem:

(a) For each subinterval, we use the value of y at the left endpoint as the height of the rectangular
region. If we take the right endpoint instead (we will get a surplus in this case), do we get the
same result? How about taking an arbitrary point in each subinterval?

(b) In finding the approximations, we divide [0, 1] into equal subintervals. How about dividing it into
unequal subintervals?

3.2 Limits of Sequences

In the last section, we obtained formulas for vn and S n in Problems 1 and 2 respectively. Each of these formulas
gives a sequence (which is a special type of function). To consider the behavior of a sequence for large n, we
introduce the concept of limit of a sequence.

Definition

• A sequence is a function whose domain is Z+ (the set of all positive integers).

• A sequence of real numbers is a sequence whose codomain is R.

A sequence of real numbers is a function from Z+ to R. In this course, we will not consider sequences with
codomains different from R. Thus, in what follows, a sequence means a sequence of real numbers.

Let f : Z+ −→ R be a sequence. For each positive integer n, the value f (n) is called the nth term of the
sequence and is usually denoted by a small letter together with n in the subscript, for example an. The sequence
is also denoted by (an)∞n=1 because if we know all the an’s, then we know the sequence.

Sometimes, we represent a sequence (an)∞n=1 by listing a few terms in the sequence:

a1, a2, a3, a4, a5, . . .

In the following example, the sequences (an)∞n=1 and (bn)∞n=1 are the sequences obtained in Problem 1 and
Problem 2 in the last section respectively.

Example

(1) Let an = 4 +
1
2n . The sequence (an)∞n=1 can be represented by

9
2
,

17
4
,

33
8
,

65
16
, . . . (3.2.1)
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(2) Let bn =
1
3
− 1

2n
+

1
6n2 . The sequence (bn)∞n=1 can be represented by

0, 1
8
,

5
27
,

7
32
,

6
25
, . . . (3.2.2)

Remark

• It is not a good way to describe a sequence by listing a few terms in the sequence. For example, in
(3.2.1) or (3.2.2), it may not be easy to find a formula for the nth term. Moreover, different people may
obtain different formulas. It is better to describe a sequence by writing down a formula for the nth term
explicitly.

• To denote a sequence, some authors use the notation {an}∞n=1 instead of (an)∞n=1.

Definition A sequence (an)∞n=1 is said to be convergent if there exists a real number L such that

(∗) an is arbitrarily close to L if n is sufficiently large.

Remark Condition (∗) means that we can make |an − L| as small as we want by taking n large enough. For the
sequence (an)∞n=1 where an =

1
2n , we can make an arbitrarily close to 0 by taking n large enough. For example,

if we want
∣∣∣ 1
2n − 0

∣∣∣ < 0.01, we can take n > 7; if we want
∣∣∣ 1
2n − 0

∣∣∣ < 0.001, we can take n > 10 etc.

Intuitively, Condition (∗) means that if we let n increase without bound (or let n approach “∞”, an imag-
inary point very far on the right), the value an approaches L. Geometrically, this means that the point (n, an)
approaches the horizontal line y = L as n increases without bound.

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 3.4

Remark For simplicity, instead of saying Condition (∗), we will say

(∗∗) an is close to L if n is large.

In the definition of “convergent”, it is clear that if L exists, then it is unique. We say that L is the limit of
(an)∞n=1 and we write lim

n→∞ an = L.

FAQ Can we just write lim an = L, omitting n→ ∞?

Answer For sequences, this will not cause ambiguity. However, for functions, we will consider (in later
sections) limits at infinity as well as limits at a point a (where a ∈ R). The notations lim

x→∞ f (x) and lim
x→a

f (x) have
different meanings. �

The following rules can be proved by definition using an alternative method, called ε-N method, to describe
condition (∗). However, the ε-N definition is outside the scope of this course. Readers may convince themselves
that the rules are true using intuition.
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Rules for Limits of Sequences

(L1) lim
n→∞ k = k (where k is a constant)

(L2) lim
n→∞

1
np = 0 (where p is a positive constant)

(L3) lim
n→∞

1
bn = 0 (where b is a constant greater than 1)

(L4) lim
n→∞(an + bn) = lim

n→∞ an + lim
n→∞ bn

(L5) lim
n→∞ anbn = lim

n→∞ an · lim
n→∞ bn

(L6) lim
n→∞

an

bn
=

lim
n→∞ an

lim
n→∞ bn

provided that lim
n→∞ bn , 0.

Remark

• The meaning of (L1) is that if an = k for all n where k is a constant, then the sequence (an)∞n=1 is
convergent and its limit is k.

• The meaning of (L4) is that if both (an)∞n=1 and (bn)∞n=1 are convergent and their limits are L and M
respectively, then (an + bn)∞n=1 is also convergent and its limit is L + M.

• The following is a special case of (L5). It can be obtained by putting an = k for all n and applying (L1).

(L5s) lim
n→∞ kbn = k lim

n→∞ bn

• Using (L4) and (L5s), we get

(L4′) lim
n→∞(an − bn) = lim

n→∞ an − lim
n→∞ bn

In fact, Rule (L4) is valid for sum and difference of finitely many sequences. This general result will be
referred to as Rule (L4). Similarly, the result for product of finitely many sequences will be referred to
as Rule (L5).

In Problem 1 in the last section, the sequence obtained can be represented by the formula an = 4 +
1
2n . Our

intuition tells us that the limit of the sequence is 4. Below we use rules for limits to justify this result.

Example Find lim
n→∞

(
4 +

1
2n

)
, if it exists.

Explanation The sequence under consideration is given by an = 4 +
1
2n . The question asks for the following

(1) Does the limit of (an)∞n=1 exist or not (or equivalently, is the sequence convergent)?

(2) If the answer to (1) is affirmative, find the limit.

Solution lim
n→∞

(
4 +

1
2n

)
= lim

n→∞ 4 + lim
n→∞

1
2n Rule (L4)

= 4 + 0 Rules (L1) and (L3)

= 4
�
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Remark Below is the logic in the above calculation:

(1) In the first step, because the constant sequence (4)∞n=1 and the sequence
( 1

2n

)∞
n=1

are convergent, we can
apply Rule (L4).

(2) The limits of the two sequences are found by Rule (L1) and Rule (L3) respectively in the second step.

The sequence in the next example is the one obtained in Problem 2 in the last section.

Example Find lim
n→∞

2n3 − 3n2 + n
6n3 , if it exists.

Solution

lim
n→∞

2n3 − 3n2 + n
6n3 = lim

n→∞

(
1
3
− 1

2n
+

1
6n2

)
Rewrite the expression

= lim
n→∞

1
3
− lim

n→∞

(
1
2
· 1

n

)
+ lim

n→∞

(
1
6
· 1

n2

)
Rule (L4), rewrite 2nd and 3rd terms

=
1
3
− 1

2
· lim

n→∞
1
n

+
1
6
· lim

n→∞
1
n2 Rules (L1) and (L5s)

=
1
3
− 1

2
· 0 +

1
6
· 0 Rule (L2)

=
1
3 �

Example Find lim
n→∞ (1 + 2n), if it exists.

Solution Limit does not exist. This is because we can’t find any real number L satisfying the condition that
2n + 1 is close to L if n is large. �

Remark If we apply rules for limits, we get

lim
n→∞(2n + 1) = lim

n→∞ 2n + lim
n→∞ 1 Rule (L4)

= 2 lim
n→∞ n + 1 Rules (L1) and (L5s)

However, we can’t proceed because lim
n→∞ n does not exist. From this, we see that the given limit does not exist.

FAQ Can we say that lim
n→∞(1 + 2n) is∞?

Answer Limit of a sequence is a real number satisfying Condition (∗) given in the definition on page 76.
Because∞ is not a real number, we should say that the limit does not exist.

In the next section, we will discuss the meaning of lim
x→∞ f (x) = ∞ etc. �

Example Find lim
n→∞

n + 1
2n + 1

, if it exists.

Explanation We can’t use Rule (L6) because limits of the numerator and the denominator do not exist. However,
we can’t conclude from this that the given limit does not exist. To find the limit, we use a trick: divide the
numerator and the denominator by n.
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Solution lim
n→∞

n + 1
2n + 1

= lim
n→∞

n + 1
n

2n + 1
n

Divide numerator and denominator by n

=

lim
n→∞

(
1 + 1

n
)

lim
n→∞

(
2 + 1

n
) Rule (L6), rewrite numerator and denominator

=

lim
n→∞ 1 + lim

n→∞
1
n

lim
n→∞ 2 + lim

n→∞
1
n

Rule (L4)

=
1 + 0
2 + 0

Rules (L1) and (L2)

=
1
2

�

Remark We can apply the following shortcut (called the Leading Terms Rule). The method is to throw away
the constant term 1 in the numerator and the denominator (note that if n is very large, compared with n or 2n,
1 is very small).

lim
n→∞

n + 1
2n + 1

= lim
n→∞

n
2n

= lim
n→∞

1
2

=
1
2
.

The Leading Terms Rule for limits of functions at infinity will be discussed in more details in the next section
(see page 83).

Exercise 3.2
1. For each of the following, find the limit if it exists.

(a) lim
n→∞

1√
n

(b) lim
n→∞(7 − 5

n2 )

(c) lim
n→∞

3n2 − 4000
2n2 + 10000

(d) lim
n→∞

n2 − 12345
n + 1

(e) lim
n→∞

5n2 + 4
2n3 + 3

(f) lim
n→∞

(1
n

+ (−1)n
)

2. Suppose $50,000 is deposited at a bank and the annual interests rate is 2%.

(a) What amount (correct to the nearest cent) will the account have after one year if interests is
(i) compounded quarterly;

(ii) compounded monthly?
(b) If interest is compounded n times a year, express the amount An after one year in terms of n.
∗(c) Does lim

n→∞ An exist? What is the value?
∗3. For each of the following sequences (an)∞n=1, use computer to find the first 100 (or more) terms. Does

lim
n→∞ an exists? If yes, what is the value?

(a) an =
(
1 +

1
n

)n

(b) an =
(
1 +

2
n

)n

(c) an = n sin 1
n

(angles are in radians)
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∗4. Suppose (an) is a sequence such that 0 < an for all n and a1 > a2 > a3 > · · · . Does lim
n→∞ an exist? What

can you tell about the limit?

3.3 Limits of Functions at Infinity

When we consider limit of a sequence (an)∞n=1, we let n approach∞ through the discrete points n = 1, 2, 3, . . . .
Recall that a sequence means a sequence of real numbers; it is a function from Z+ to R. In many cases, we will
consider functions f from a subset of R to R such that f (x) is defined when x is large. For such functions, we
can let x approach∞ continuously (through large real numbers) and consider the behavior of f (x).

Convention A function means a function whose domain is a subset of R and whose codomain is R, unless
otherwise stated.

Definition Let f be a function such that f (x) is defined for sufficiently large x. Suppose L is a real number
satisfying the following condition:

(∗) f (x) is arbitrarily close to L if x is sufficiently large.

Then we say that L is the limit of f at infinity and write lim
x→∞ f (x) = L.

Remark

• The condition “ f (x) is defined for sufficiently large x” means that there is a real number r such that f (x)
is defined for all x > r.

• L is called the limit because it is unique (if it exists).

• For simplicity, instead of saying Condition (∗), we will say

(∗∗) f (x) is close to L if x is large.

Condition (∗) means that if we let x increase without bound, then the value f (x) approaches L. To visualize
this, imagine a small creature living on the curve y = f (x). Suppose the small creature moves to the right
indefinitely. It will get “closer and closer” to the horizontal line y = L.

Figure 3.5

FAQ For sequences, we just say “limit”. For functions, why are the words “at infinity” added?

Answer For functions, there are other types of limits. In Section 3.5, we will discuss limits of functions at a
(where a ∈ R). �
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The following rules for limits of functions at infinity are similar to that for limits of sequences. In (4), (5),
(5s) and (6), f and g are functions such that f (x) and g(x) are defined for sufficiently large x.

Rules for Limits of Functions at Infinity

(L1) lim
x→∞ k = k (where k is a constant)

(L2) lim
x→∞

1
xp = 0 (where p is a positive constant)

(L3) lim
x→∞

1
bx = 0 (where b is a constant greater than 1)

(L4) lim
x→∞

(
f (x) ± g(x)

)
= lim

x→∞ f (x) ± lim
x→∞ g(x)

The result is valid for sum and difference of finitely many functions.

(L5) lim
x→∞

(
f (x) · g(x)

)
= lim

x→∞ f (x) · lim
x→∞ g(x)

The result is valid for product of finitely many functions.

(L5s) lim
x→∞

(
k · g(x)

)
= k · lim

x→∞ g(x)

(L6) lim
x→∞

f (x)
g(x)

=

lim
x→∞ f (x)

lim
x→∞ g(x)

provided that lim
x→∞ g(x) , 0.

To consider limits of functions at infinity, we should first check the domains of the functions. For example,
if f (x) =

√
1 − x, the domain of f is {x ∈ R : 1 − x ≥ 0} = (−∞, 1]; it is meaningless to talk about limit of f at

infinity. In the next example, the domain of the function 1− 2
x3 is R \ {0}; the function is defined for large x and

hence we may consider its limit at infinity (whether the limit exists; and if exists, find the value).

Example Find lim
x→∞

(
1 − 2

x3

)
, if it exists.

Solution lim
x→∞

(
1 − 2

x3

)
= lim

x→∞ 1 − lim
x→∞

(
2 · 1

x3

)
Rule (L4), rewrite 2nd term

= 1 − 2 · lim
x→∞

1
x3 Rules (L1) and (L5s)

= 1 − 2 · 0 Rule (L2)

= 1
�

Example Find lim
x→∞

(
2−x + 3

)
, if it exists.

Solution lim
x→∞(2−x + 3) = lim

x→∞ 2−x + lim
x→∞ 3 Rule (L4)

= lim
x→∞

1
2x + 3 Rewrite first term and Rule (L1)

= 0 + 3 Rule (L3)

= 3
�
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Example Find lim
x→∞

x2 + 1
3x3 − 4x + 5

, if it exists.

Explanation Because limits of the numerator and denominator do not exist, we can’t apply Rule (6). The first
step is to divide the numerator and denominator by x3 so that the limits at infinity of the new numerator and
denominator exist.

Solution

lim
x→∞

x2 + 1
3x3 − 4x + 5

= lim
x→∞

x2 + 1
x3

3x3 − 4x + 5
x3

Divide numerator and denominator by x3

=

lim
x→∞

(
1
x

+
1
x3

)

lim
x→∞

(
3 − 4

x2 +
5
x3

) Rule (L6), rewrite numerator and denominator

=

lim
x→∞

1
x

+ lim
x→∞

1
x3

lim
x→∞ 3 − lim

x→∞
4
x2 + lim

x→∞
5
x3

Rule (L4)

=
0 + 0

3 − 0 + 0
Rules (L1), (L2) and (L5s)

= 0
�

The next example is similar to the last one. To find limits at infinity for rational functions, we can divide
the numerator and denominator by a suitable power of x.

Example Find lim
x→∞

x3 + 1
3x3 − 4x + 5

, if it exists.

Solution

lim
x→∞

x3 + 1
3x3 − 4x + 5

= lim
x→∞

x3 + 1
x3

3x3 − 4x + 5
x3

Divide numerator and denominator by x3

=

lim
x→∞

(
1 +

1
x3

)

lim
x→∞

(
3 − 4

x2 +
5
x3

) Rule (L6), rewrite numerator and denominator

=

lim
x→∞ 1 + lim

x→∞
1
x3

lim
x→∞ 3 − lim

x→∞
4
x2 +

5
x3

Rule (L4)

=
1 + 0

3 − 0 + 0
Rules (L1), (L2) and (L5s)

=
1
3 �

To find limits at infinity for rational functions, we can also use the following shortcut.
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Leading Terms Rule Let f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0 and g(x) = bmxm + bm−1xm−1 + · · ·+ b1x + b0,
where an , 0 and bm , 0. Then we have

lim
x→∞

f (x)
g(x)

= lim
x→∞

anxn + an−1xn−1 + · · · + a1x + a0

bmxm + bm−1xm−1 + · · · + b1x + b0
= lim

x→∞
anxn

bmxm

Proof The idea is to extract factor anxn in the numerator and bmxm in the denominator. Putting

ϕ(x) =
1 +

an−1
an
· 1

x +
an−2
an
· 1

x2 + · · · + a1
an
· 1

xn−1 +
a0
an
· 1

xn

1 +
bm−1
bm
· 1

x +
bm−2
bm
· 1

x2 + · · · + b1
bm
· 1

xm−1 +
b0
bm
· 1

xm

we have
f (x)
g(x)

=
anxn

bmxm · ϕ(x). It is straightforward to check that lim
x→∞ϕ(x) = 1. Hence by Rule (5), we obtain

the required result. �

Remark

• (a) If n = m, the limit is an

bn
.

(b) If n < m, the limit is lim
x→∞

(
an

bm
· 1

xm−n

)
= 0.

(c) If n > m, the limit is lim
x→∞

(
an

bm
· xn−m

)
which does not exist because as x increases indefinitely, xn−m

increases indefinitely.

• The Leading Terms Rule can also be applied to “functions similar to rational functions”, for example, for
f (x) = x + 2

√
x + 3 and g(x) = 5x + 6

√
x + 7, we have lim

x→∞
x + 2

√
x + 3

5x + 6
√

x + 7
= lim

x→∞
x

5x

• The Leading Terms Rule can’t be applied to limits of rational functions at a point: lim
x→a

f (x)
g(x)

, where a ∈ R.

Below we re-do the last two examples using the Leading Terms Rule.

Example lim
x→∞

x2 + 1
3x3 − 4x + 5

= lim
x→∞

x2

3x3 Leading Terms Rule

= lim
x→∞

(
1
3
· 1

x

)
Simplify and rewrite expression

=
1
3
· 0 Rules (L2) and (L5s)

= 0

Example lim
x→∞

x3 + 1
3x3 − 4x + 5

= lim
x→∞

x3

3x3 Leading Terms Rule

= lim
x→∞

1
3

Simplify expression

=
1
3

Rule (L1)
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In the next example, the function can be considered as a product or a quotient of two functions. However,
we can’t apply Rule (5) or (6) because limit at infinity of one of the functions does not exist. To find the limit,
we need the following result.

Sandwich Theorem Let f , g and h be functions such that f (x), g(x) and h(x) are defined for sufficiently large
x. Suppose that f (x) ≤ g(x) ≤ h(x) if x is sufficiently large and that both lim

x→∞ f (x) and lim
x→∞ h(x) exist and are

equal (with common limit denoted by L). Then we have lim
x→∞ g(x) = L.

Remark The condition “ f (x) ≤ g(x) ≤ h(x) if x is sufficiently large” means that there is a real number r such
that the inequalities are true for all x > r.

Example Find lim
x→∞

sin x
x

, if it exists.

Explanation The given function can be written as a product of two functions: sin x and 1
x
. For the second

function, its limit at infinity is 0. However, for the first function, its limit at infinity does not exist. Thus we
can’t apply Rule (5).

Solution Since −1 ≤ sin x ≤ 1 for all real numbers x, it follows that

−1
x
≤ sin x

x
≤ 1

x
for all x > 0.

Note that lim
x→∞

−1
x

= lim
x→∞

1
x

= 0. Thus by the Sandwich Theorem, we have lim
x→∞

sin x
x

= 0. �

Example Find lim
x→∞(1 + log x), if it exists.

Remark Since lim
x→∞ log x does not exist, we can’t apply Rule (L4).

Solution lim
x→∞(1 + log x) does not exist. This is because if x increases without bound, so does 1 + log x. �

Infinite Limits

In the last example, although limit does not exist, we know that if x increases indefinitely, so does (1 + log x).
In the limit notation lim

x→∞, the symbol x → ∞ indicates that “x increases indefinitely”, or “x approaches ∞”.
Using the same idea, we also write 1 + log x → ∞ which indicates that the value increases indefinitely (as x
increases indefinitely). Putting y = 1 + log x, we write y → ∞ as x → ∞. Concerning the graph of y = f (x) in
the coordinate plane, x→ ∞ means that x goes to the right indefinitely, approaching the point∞ (an imaginary
point on the right) and y → ∞ means that y goes up indefinitely, approaching the point ∞ (an imaginary point
at the top).

Notation Let f be a function such that f (x) is defined for sufficiently large x. Suppose that

(∗) f (x) is arbitrarily large if x is sufficiently large.

Then we write lim
x→∞ f (x) = ∞.

Remark

• Because ∞ is not a real number, lim
x→∞ f (x) = ∞ does not mean the limit exists. In fact, it indicates that

the limit does not exist and explains why it does not exist.
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• Instead of lim
x→∞ f (x) = ∞, we also write f (x)→ ∞ as x→ ∞.

• For simplicity, instead of saying Condition (∗), we will say

(∗∗) f (x) is large if x is large.

• Similar to lim
x→∞ f (x) = ∞, we also have lim

x→∞ f (x) = −∞ which means that

(∗∗) f (x) is large negative if x is large.

Example (a) lim
x→∞(1 + x2) = ∞ (limit does not exist) (b) lim

x→∞(1 − x2) = −∞ (limit does not exist)
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Example lim
x→∞

1 + x2

1 + x
= lim

x→∞
x2

x
Leading Terms Rule

= lim
x→∞ x

= ∞ (limit does not exist)
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Figure 3.8

Limits at negative infinity

Similar to limits at infinity, we may consider limits at negative infinity provided that f (x) is defined for x
sufficiently large negative. Readers can figure out the meaning of the following notations:

• lim
x→−∞ f (x) = L where L is a real number;

• lim
x→−∞ f (x) = ∞;

• lim
x→−∞ f (x) = −∞.

Example

(1) lim
x→−∞

1
x

= 0

(2) lim
x→−∞ x3 = −∞ (limit does not exist)

(3) lim
x→−∞(1 − x3) = ∞ (limit does not exist)

FAQ Can we perform addition, multiplication etc. with∞ or −∞?

Answer Yes and no. For example,

• 1 +∞ = ∞,
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• 2 · ∞ = ∞.

However,

• ∞−∞ is undefined,

• 0 · ∞ is undefined.

Be careful when you perform such operations. �

Exercise 3.3

1. For each of the following, find the limit if it exists.

(a) lim
x→∞

1√
x − 1

(b) lim
x→∞(15 − 16x−3)

(c) lim
x→∞ 5−x (d) lim

x→∞
√

x

(e) lim
x→∞

x2 + 9
x3 + 1

(f) lim
x→∞

x2 + 9
x2 + 1

(g) lim
x→∞

x2 + 9
x + 1

(h) lim
x→∞

|x|
x

(i) lim
x→−∞

|x|
x

(j) lim
x→−∞ x sin x

2. The concentration C of a drug in a patient’s bloodstream t hours after it was injected is given by

C(t) =
0.15t
t2 + 3

.

(a) Find lim
t→∞C(t).

(b) Interpret the result in (a).

3. The population P of a certain small town t years from now is predicted to be P(t) = 35000 +
10000
(t + 2)2 .

(a) Find the population in the long run.
(b) Use computer to sketch the graph of P. What can you tell from the graph?

∗4. For each of the following functions f , use computer to find f (x) for large x. Guess whether lim
x→∞ f (x)

exists or not. If the limit exists, what is the limit?

(a) f (x) =
√

x + 1 − √x

(b) f (x) =
√

x2 + x − x

(c) f (x) =
x99

2x

3.4 One-sided Limits

In the last section, we consider limits at infinity (or negative infinity) by letting x approach the imaginary point
∞ (or −∞). In this section, we consider limits at a point a on the real line by letting x approach a. Because x
can approach a from the left-side or from the right-side, we have left-side and right-side limits. They are called
one-sided limits.
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Right-side Limits

Definition Let a ∈ R and let f be a function such that f (x) is defined for x sufficiently close to and greater than
a. Suppose L is a real number satisfying

(∗) f (x) is arbitrarily close to L if x is sufficiently close to and greater than a.

Then we say that L is the right-side limit of f at a and we write lim
x→a+

f (x) = L.

Remark

• The condition “ f (x) is defined for x sufficiently close to and greater than a” means that there is a positive
real number δ such that f (x) is defined for all x ∈ (a, a+δ). For simplicity, instead of saying the condition,
we will say “ f is defined on the right-side of a”.

• Instead of saying Condition (∗), we will say

(∗∗) f (x) is close to L if x is close to and greater than a.

• In the definition, it doesn’t matter whether f is defined at a or not. If f (a) is defined, its value has no
effect on the existence and the value of lim

x→a+
f (x). This is because right-side limit depends on the values

of f (x) for x close to and greater than a.

Example Let f (x) = 1 − 2−
1√
x . The domain of f is (0,∞) and so f is

defined on the right-side of 0. The graph of f is shown in the following
figure.

Imagine a small creature living on the curve. Suppose it moves to the
left so that the x-coordinate of its position approaches 0 (from the right).
From the graph, we see that the y-coordinate will approach 1. In other
words, the right-side limit of f at 0 is 1, that is, lim

x→0+
(1 − 2−

1√
x ) = 1.
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Figure 3.9

FAQ How can we know the graph of f ?

Answer This example is chosen to illustrate the idea of right-side limit. The graph is generated by computer.

• To see why lim
x→0+

(1−2−
1√
x ) = 1, note that if x is small positive, then so is

√
x and hence 1√

x
is large positive;

the expression 2−
1√
x = 2−large positive =

1

2large positive
is small positive and so f (x) = (1 − small positive) is

close to 1.

• To see why the graph goes down (as x increases), note that if x increases, then so does
√

x and so 1√
x

decreases; hence − 1√
x

increases; therefore 2−
1√
x increases and thus f (x) decreases. An alternative way

to see this is to use differentiation (see Chapter 5 and Chapter 9). �

Example Let f (x) =
√

x. The domain of f is [0,∞) and so f
is defined on the right-side of 0.

Note that if x is close to and greater than 0, then f (x) is close
to 0. This means that lim

x→0+

√
x = 0.
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Example Let f (x) = sin 1
x
. The domain of f is R \ {0}. Thus f is defined on the right-side of 0 and we can

consider the right-side limit of f at 0.

Remark In fact, f (x) is also defined for x < 0 and so we can
consider its left-side limit. See the definition for left-side limit
below.

The graph of f (for 0 < x ≤ 2) is shown in Figure 3.11. Note that
when x approaches 0 from the right-side, f (x) oscillates between
−1 and 1. Thus lim

x→0+
sin 1

x
does not exist.
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Figure 3.11

Example Let f (x) =
sin x

x2 − x
. The domain of f is R \ {0, 1}. Thus

f (x) is defined for 0 < x < 1 and we can consider lim
x→0+

f (x).

The graph of f (for 0 < x ≤ 0.8) is shown in Figure 3.12. From
the graph, we see that lim

x→0+

sin x
x2 − x

= −1.

Remark The limit can be calculated using the following fact:

lim
x→0

sin x
x

= 1

It is a two-sided limit. See next section for more details.
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Left-side Limits

If a function f is defined on the left-side of a, we can consider its left-side limit. The notation lim
x→a− f (x) = L

means that

(∗) f (x) is arbitrarily close to L if x is sufficiently close to and less than a.

Example Let f (x) =
sin x

x2 − x
. The domain of f is R \ {0, 1}. Thus

f (x) is defined for x < 0 and we can consider lim
x→0−

f (x).

The graph of f (for x close to and less than 0) is shown in the
following figure. From the graph, we see that lim

x→0−
sin x

x2 − x
= −1.
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Similar to lim
x→∞ f (x) = ∞ etc., we have the following notations:

(1) lim
x→a+

f (x) = ∞

(2) lim
x→a+

f (x) = −∞

(3) lim
x→a− f (x) = ∞

(4) lim
x→a− f (x) = −∞



3.5. Two-sided Limits 89

Readers can figure out the meaning of the notations themselves. Geometrically, if any one of these notations is
true, then the line x = a is a vertical asymptote for the graph of f .

Example lim
x→0+

1
x

= ∞ lim
x→1−

1
x − 1

= −∞
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Exercise 3.4

1. For each of the following, find the limit if it exists.

(a) lim
x→1+

√
x − 1 (b) lim

x→0+

1√
x

(c) lim
x→0−

1
x3 (d) lim

x→0−
sin 1

x

(e) lim
x→0+

(2 − 3
1
x ) (f) lim

x→0−
(2 − 3

1
x )

3.5 Two-sided Limits

Definition Let a ∈ R and let f be a function that is defined on the left-side and right-side of a. Suppose that
both lim

x→a− f (x) and lim
x→a+

f (x) exist and are equal (with the common limit denoted by L which is a real number).
Then the two-sided limit, or more simply, the limit of f at a is defined to be L, written lim

x→a
f (x) = L.

Remark

• lim
x→a

f (x) = L means that

(∗) f (x) is arbitrarily close to L if x is sufficiently close to (but not equal to) a.

• The condition “ f be a function that is defined on the left-side and the right-side of a” means that there is
a positive real number δ such that f (x) is defined for all x ∈ (a − δ) ∪ (a, a + δ).

• In considering lim
x→a

f (x), it doesn’t matter whether f is defined at a or not.

Example Let f (x) =
sin x

x2 − x
. The domain of f is R \ {0, 1}. Thus

f is defined on the left-side and right-side of 0. In Section 3.4, the
left-side and right-side limits of f at 0 were found to be

lim
x→0+

sin x
x2 − x

= −1 and lim
x→0−

sin x
x2 − x

= −1.

Thus, by definition, the limit of f at 0 exists and lim
x→0

sin x
x2 − x

= −1.
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Example Let f (x) =
x
|x| .

• For x > 0, we have |x| = x and so f (x) =
x
x

= 1.

Hence we get lim
x→0+

x
|x| = 1.

• For x < 0, we have |x| = −x and so f (x) =
x
−x

= −1.

Hence we get lim
x→0−

x
|x| = −1.

Therefore, lim
x→0

x
|x| does not exist.
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The following rules are useful to find limits of functions at a point a. In Rules (La4), (La5), (La5s) and
(La6), f and g are functions that are defined on the left-side and right-side of a. Some of the rules are similar
to that for limits of functions at infinity.

Rules for Limits of Functions at a Point

(La1) lim
x→a

k = k (where a ∈ R and k is a constant)

(La2) lim
x→a

xn = an (where a ∈ R and n is a positive integer)

(La2′) lim
x→a

n√x = n√a (where a ∈ R and n is an odd positive integer)

lim
x→a

n√x = n√a (where 0 < a ∈ R and n is an even positive integer)

(La3) lim
x→a

bx = ba (where a ∈ R and b is a positive real number)

(La4) lim
x→a

(
f (x) ± g(x)

)
= lim

x→a
f (x) ± lim

x→a
g(x)

The result is valid for sum and difference of finitely many functions.

(La5) lim
x→a

(
f (x) · g(x)

)
= lim

x→a
f (x) · lim

x→a
g(x)

The result is valid for product of finitely many functions.

(La5s) lim
x→a

(
k · g(x)

)
= k · lim

x→a
g(x) (where k is a constant)

(La6) lim
x→a

f (x)
g(x)

=

lim
x→a

f (x)

lim
x→a

g(x)
provided that lim

x→a
g(x) , 0.

Example Find lim
x→4

(1 + x2), if it exists.

Solution lim
x→4

(1 + x2) = lim
x→4

1 + lim
x→4

x2 Rule (La4)

= 1 + 42 Rules (La1) and (La2)

= 17 �

Recall that a polynomial function p is a function that can be written in the following form

p(x) = cnxn + cn−1xn−1 + · · · + c1x + c0,
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where c0, c1, . . . , cn are constants. Using the method in the above example, we can prove the following theorem
which means that the limit of a polynomial function at any real number can be found by substitution.

Theorem 3.5.1 Let p(x) be a polynomial and let a be a real number. Then we have

lim
x→a

p(x) = p(a).

Example Find lim
x→2

x − 1
x2 + x − 2

, if it exists.

Solution lim
x→2

x − 1
x2 + x − 2

=

lim
x→2

(x − 1)

lim
x→2

(x2 + x − 2)
Rule (La6)

=
2 − 1

22 + 2 − 2
Theorem 3.5.1

=
1
4 �

Recall that a rational function r is a function that can be written in the form

r(x) =
p(x)
q(x)

,

where p and q are polynomial functions. Using the method in the above example, we can prove the following
theorem which means that the limit of a rational function at any a belonging to its domain can be found by
substitution.

Theorem 3.5.2 Let p(x) and q(x) be polynomials and let a be a real number. Suppose that q(a) , 0. Then we
have

lim
x→a

p(x)
q(x)

=
p(a)
q(a)

.

Example Find lim
x→1

x − 1
x2 + x − 2

, if it exists.

Explanation The rational function f (x) =
x − 1

x2 + x − 2
is undefined at x = 1. This means that 1 does not belong

to the domain of f and so we can’t apply Theorem 3.5.2. If we substitute x = 1 into the numerator and
denominator, we get 0

0
. We say that the limit is in the indeterminate form 0

0
.

To find the limit, we replace f by a function g which coincides with f on the left-side and right-side of 1
such that the limit of g at 1 can be found by substitution (see the following figures).
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The function g is given by g(x) =
1

x + 2
. It can be found by simplifying the expression defining f :

f (x) =
x − 1

(x − 1)(x + 2)
= g(x) for all x ∈ R \ {1,−2}.

Solution lim
x→1

x − 1
x2 + x − 2

= lim
x→1

x − 1
(x − 1)(x + 2)

= lim
x→1

1
x + 2

Simplify expression

=
1

1 + 2
Theorem 3.5.2

=
1
3 �

Example Find lim
x→1

x + 1
x2 + x − 2

, if it exists.

Explanation The rational function f (x) =
x + 1

x2 + x − 2
is undefined at x = 1. Thus we can’t use Theorem 3.5.2.

If we put x = 1 into the numerator and denominator, we get 2
0

. Limits (left-side and right-side) of the form
non-zero number

0
are∞ or −∞. See the solution below for more details.

Solution lim
x→1

x + 1
x2 + x − 2

does not exist. This is because if x is close
to 1, the numerator is close to 2 whereas the denominator is close to
0 and so the fraction is very large in magnitude (may be positive or
negative). �

Remark Indeed, the denominator is x2 + x − 2 = (x − 1)(x + 2).
Therefore, if x is close to and greater than 1, the denominator is
small positive. Hence we have lim

x→1+

x + 1
x2 + x − 2

= ∞. Similarly we

have lim
x→1−

x + 1
x2 + x − 2

= −∞.
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Example Let f (x) = x2 + 3. Find lim
h→0

f (x + h) − f (x)
h

.

Explanation The expression f (x + h) − f (x)
h

involves two variables x and h. However, the question asks for lim
h→0

(limit of the expression as h approaches 0). This implies that x is considered as a constant. In this way, the
expression f (x + h) − f (x)

h
is considered as a function of h, defined for all h , 0. The limit is in the indeterminate

form 0
0

because if we put h = 0 in the expression, the numerator and denominator are both 0. To find the limit,
we simplify the expression so that the troublesome factor h in the denominator is canceled.

Solution
f (x + h) − f (x)

h
=

(
(x + h)2 + 3

) − (x2 + 3)
h

=
(x2 + 2xh + h2 + 3) − (x2 + 3)

h

=
2xh + h2

h

=
h(2x + h)

h
= 2x + h
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Since
f (x + h) − f (x)

h
and 2x + h (considered as functions of h) are equal on the left-side and right-side of

h = 0, it follows that

lim
h→0

f (x + h) − f (x)
h

= lim
h→0

(2x + h)

= 2x + 0 Theorem 3.5.1

= 2x �

Remark The expression f (x + h) − f (x)
h

is called a difference quotient. Limits of difference quotients will be
discussed in detail in Chapter 4.

Summary for Limits In this chapter, we have introduced the following types of limits:

lim
n→∞ an, lim

x→∞ f (x), lim
x→−∞ f (x), lim

x→a− f (x), lim
x→a+

f (x), lim
x→a

f (x).

Since the definitions for lim
n→∞ an and lim

x→∞ f (x) are similar, we will omit limits of sequences in the following
discussion. Note that for functions, the five types of limits take the form

lim
x→� f (x)

where � can be∞, −∞, a−, a+ or a. The notation

lim
x→� f (x) = L,

where L is a real number, means the following

f (x) is arbitrarily close to L if x is “sufficiently close to (and different from)” �,

which, in short, is written as

f (x) is close to L if x is “close to (and different from)” �,

where f (x) is close to L has the usual meaning and

• x is “close to (and different from)”∞ means x is large;

• x is “close to (and different from)” −∞ means x is large negative;

• x is “close to (and different from)” a− means x is close to and less than a;

• x is “close to (and different from)” a+ means x is close to and greater than a;

• x is “close to (and different from)” a has the usual meaning.

If we cannot find a real number L such that lim
x→� f (x) = L, then we say that lim

x→� f (x) does not exist. There are
several possibilities for this. We may have

lim
x→� f (x) = ∞ or lim

x→� f (x) = −∞ or other behavior such as oscillation.

Similar to the above discussion, the notation lim
x→� f (x) = ∞means that f (x) is “close to”∞ if x is “close to (and

different from)” �, where “close to”∞ means large.
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Exercise 3.5

1. For each of the following, find the limit, if it exists.

(a) lim
x→2

(x2 + 3x − 4) (b) lim
x→7

(x2 − 5x − 8)3

(c) lim
x→0

(
3x − 5
2x + 7

)2
(d) lim

x→1

x
√

x2 + 1
x + 1

(e) lim
x→−2

25+4x (f) lim
x→−2

x2 − 4
x2 + x − 2

(g) lim
x→−2

x2 − 4
x2 − x + 2

(h) lim
x→6

x2 − 6x
x2 − 5x − 6

(i) lim
x→5

x2 + 25
x − 5

(j) lim
x→3

x − 3
x2 + 9

(k) lim
x→4

√
x − 2

x − 4
(l) lim

x→2

x − 5

2 − √x − 1

2. For each of the following f , find lim
h→0

f (x + h) − f (x)
h

.

(a) f (x) = 4x − 13 (b) f (x) = x3

(c) f (x) =
1
x

(d) f (x) =
√

x

3.6 Continuous Functions

In the last section, we see that for “nice” functions, we can use substitution to find limits, that is, lim
x→a

f (x) equals
f (a). Functions with this property are called continuous functions. They are very important in the theory of
more advanced calculus because they have many other nice properties.

Definition Let a ∈ R and let f be a function such that f (x) is defined for x sufficiently close to a (including a).
If the following condition holds,

(∗) lim
x→a

f (x) = f (a).

then we say that f is continuous at a. Otherwise, we say that f is discontinuous (or not continuous) at a.

Remark

• The condition “ f (x) is defined for x sufficiently close to a” means that there exists a positive real number
δ such that f (x) is defined for all x ∈ (a−δ, a+δ). This condition implies that f is defined on the left-side
and right-side of a as well as at the point a. Condition (∗) means that the left-side and right-side limits
exist and lim

x→a+
f (x) = lim

x→a− f (x) = f (a).

• Condition (∗) can be replaced by the following:

(∗′) f (x) is arbitrarily close to f (a) if x is sufficiently close to a.

Many authors use (∗′) as definition for “ f is continuous at a”.

• Since lim
x→a

x = a, condition (∗) means that

(∗′′) lim
x→a

f (x) = f
(
lim
x→a

x
)
.

If we consider f (x) as an operation: f acts on x, (∗′′) means that the operation of taking f and that of
taking limit commute, that is, the order of taking f and taking limit can be interchanged.
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• Instead of saying (∗′), we will say

(∗∗) f (x) is close to f (a) if x is close to a.

Roughly speaking, (∗∗) means that if x is change from a to a+∆x
where ∆x is a small number (see the following figure which shows
the graph of y = f (x) where f is a function continuous at a), then
the corresponding change in y, denoted by ∆y, is small, where
∆y = f (a + ∆x) − f (a).

Remark ∆x is a symbol to denote a small change in x; it doesn’t
mean a product of two numbers ∆ and x. a

∆x
∆y

Figure 3.20

If a function f is undefined at a, it is meaningless to talk about whether f is continuous at a. Condition (∗)
means that

(1) lim
x→a

f (x) exists;

(2) the limit in (1) equals f (a).

If lim
x→a

f (x) does not exist or if lim
x→a

f (x) exists but does not equal f (a), then f is discontinuous at a.

Example Let f (x) =



−1 if x < 0

0 if x = 0

1 if x > 0

. Determine whether f is continuous at 0 or not.

Explanation The function is defined on the left-side and the right-side of 0 as well as at 0. Therefore, we may
consider whether f is continuous at 0. In fact, we may consider whether f is continuous at 1 etc., but this is
another question.

Solution By the definition of f , we have:

lim
x→0−

f (x) = lim
x→0−

−1 = −1 and lim
x→0+

f (x) = lim
x→0+

1 = 1.

Since lim
x→0−

f (x) , lim
x→0+

f (x), it follows that lim
x→0

f (x) does not
exist. Hence f is not continuous at 0.

-3 -2 -1 1 2 3
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Figure 3.21 �

Example Let f (x) =


x2 if x , 0,

1 if x = 0.
For each real number a, determine whether f is continuous or discontin-

uous at a.

Explanation The domain of f is R. So we may consider continuity of f at any point a ∈ R (that is, whether f
is continuous at a).

Solution Consider the two cases where a = 0 or a , 0:
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(a = 0) Note that f (x) = x2 on the left-side and the right-side of 0. Thus we have

lim
x→0

f (x) = lim
x→0

x2

= 02 Theorem 3.5.1

= 0

, f (0)

Therefore, f is not continuous at 0.

(a , 0) Note that f (x) = x2 on the left-side and the right-side of a. Thus we have

lim
x→a

f (x) = lim
x→a

x2

= a2 Theorem 3.5.1

= f (a)

Therefore, f is continuous at a.
�

Remark The graph of f is shown in Figure 3.22.
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In the preceding definition, we consider continuity of a function f at a point a (a real number is considered
as a point on the real line). In the next definition, we consider continuity of f on an open interval. Recall that
an open interval is a subset of R that can be written in one of the following forms:

(α, β) = {x ∈ R : α < x < β}
(α,∞) = {x ∈ R : α < x}

(−∞, β) = {x ∈ R : x < β}
(−∞,∞) = R

where α and β are real numbers, and for the first type, we need α < β.

Definition Let I be an open interval and let f be a function defined on I. If f is continuous at every a ∈ I, then
we say that f is continuous on I.

Remark

• In the definition, the condition “ f is a function defined on I” means that f is a function such that f (x) is
defined for all x ∈ I, that is, I ⊆ dom ( f ).

• Since I is an open interval, we may consider continuity of f at any point a belonging to I.

• If there exists a ∈ I such that f is not continuous at a, then f is not continuous on I.
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Example In the last example, the domain of f is R. The function is not continuous on R because it is not
continuous at 0. For the open interval (0,∞), the function f is continuous at all a belonging to this interval.
Therefore, f is continuous on (0,∞). Similarly, f is continuous on (−∞, 0).

Example Let f (x) =
1
x

. Show that f is continuous on (0,∞) as well as on (−∞, 0).

Explanation The domain of f is R \ {0}. Since f is undefined at 0, we can’t consider continuity of f at 0. The
domain can be written as the union of two open intervals: (−∞, 0) and (0,∞). The question is to show that f
is continuous on each of these two intervals, that is, f is continuous at every a in the two intervals. We may
also say that f is continuous on (−∞, 0) ∪ (0,∞). However, this terminology will not be used in this course.
We will consider continuity on intervals only, because functions continuous on (closed and bounded) intervals
have nice properties (see Intermediate Value Theorem and Extreme Value Theorem below).

Proof For every a ∈ (0,∞), we have

lim
x→a

f (x) = lim
x→a

1
x

=
1
a

Theorem 3.5.2

= f (a)

Therefore, f is continuous at a. By definition, f is continuous on (0,∞). Similarly, f is continuous on (−∞, 0).
�

Remark The graph of f is shown in Figure 3.23.
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Figure 3.23

Remark Geometrically, a function f is continuous on an open interval I means that the graph of f on I has no
“break”; if we use a pen to draw the graph on paper, we can draw it continuously without raising the pen above
the paper.

The following two results give examples of continuous functions. They are just immediate consequences
of the corresponding results for limits.

Theorem 3.6.1 Every polynomial function is continuous on R.

Explanation The result means that if p is a polynomial function, then it is continuous on R.

Proof Let p be a polynomial function. For every a ∈ R, by Theorem 3.5.1, we have lim
x→a

p(x) = p(a), that is, p
is continuous at a. Thus by definition, p is continuous on R. �

Theorem 3.6.2 Every rational function is continuous on every open interval contained in its domain.
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Explanation The result means that if f is a rational function and if I is an open interval with I ⊆ dom ( f ), then
f is continuous on I. Recall that f can be written in the form f (x) =

p(x)
q(x)

where p(x) and q(x) are polynomials.

• If q(x) is never 0, then dom ( f ) = R.

• If q(x) = 0 has solutions, then dom ( f ) is the union of finitely many open intervals:

dom ( f ) = R \ {z1, z2, . . . , zk−1, zk} = (−∞, z1) ∪ (z1, z2) ∪ · · · ∪ (zk−1, zk) ∪ (zk,∞),

where z1, . . . , zk are the (distinct) solutions arranged in increasing order.

Proof Let f be a rational function, that is, f (x) =
p(x)
q(x)

where p(x) and q(x) are polynomials. Let I be an open
interval with I ⊆ dom ( f ). For every a ∈ I, we have a ∈ dom ( f ) and so by the definition of domain, we have
q(a) , 0. Therefore, by Theorem 3.5.2, we have lim

x→a
f (x) =

p(a)
q(a)

= f (a), that is, f is continuous at a. Thus by
definition, f is continuous on I. �

In the preceding definition, we consider continuity on open intervals. If the domain of a function f is in the
form [a, b), we cannot talk about continuity of f at a because f is not defined on the left-side of a. Since f is
defined on the right-side of a, we may consider lim

x→a+
f (x) and also whether the right-side limit equals f (a).

Definition Let a be a real number and let f be a function defined on the right-side of a as well as at a. If
lim

x→a+
f (x) = f (a), then we say that f is right-continuous at a.

Example Let f (x) =
√

x. The domain of f is [0,∞). Using a rule
similar to Rule (La2′), we get

lim
x→0+

f (x) = lim
x→0+

√
x

= 0
= f (0).

Therefore, f is right-continuous at 0.
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In the above example, f is also continuous at every a > 0. Thus, it is “continuous” at every a belonging to
its domain, where “continuous at 0” means right-continuous at 0.

Definition Let I be an interval in the form [c, d) where c is a real number and d is ∞ or a real number greater
than c. Let f be a function defined on I. We say that f is continuous on I if it is continuous at every a ∈ (c, d)
and is right-continuous at c.

Similar to the above treatment, we may also consider continuity of functions f defined on intervals in the
form (c, d] or [c, d].

Definition Let a be a real number and let f be a function defined on the left-side of a as well as at a. If
lim

x→a− f (x) = f (a), then we say that f is left-continuous at a.

Definition Let I be an interval in the form (c, d] where d is a real number and c is −∞ or a real number less
than d. Let f be a function defined on I. We say that f is continuous on I if it is continuous at every a ∈ (c, d)
and is left-continuous at d.
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Definition Let I be an interval in the form [c, d] where c and d are real numbers and c < d. Let f be a function
defined on I. We say that f is continuous on I if it is continuous at every a ∈ (c, d) and is right-continuous at c
and left-continuous at d.

Example Let f : R −→ R be the function given by

f (x) =


|x| if − 1 ≤ x ≤ 1,
−1 otherwise.

Discuss whether f is continuous on [−1, 1].

Explanation In defining f , the word “otherwise” means that if x < −1 or x > 1; this is because it is given that
dom ( f ) = R. Thus we have f (x) = −1 if x < −1 or x > 1.

Solution It is straightforward to check that f is continuous at every a ∈ (−1, 1) and that f is left-continuous at
1 and right-continuous at −1. Thus by definition, f is continuous on [−1, 1]. �

Remark

• Note that f is also defined on the right-side of 1 (for example).
Thus we can also consider the continuity of f at 1. In fact, since
lim

x→1+
f (x) = −1 and lim

x→1−
f (x) = 1, it follows that lim

x→1
f (x) does

not exist and so f is not continuous at 1.

• Let I be an interval in the form [c, d] or [c, d) or (c, d] and let
f be a function defined on an open interval containing I. Then
for every a ∈ I, we may consider whether f is continuous at a.
The above example shows that f may be continuous on I but not
continuous at some a ∈ I.
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The following theorem describes an important property of continuous functions on intervals. The proof
requires a deep understanding of real numbers and is beyond the scope of this course.

Intermediate Value Theorem Let f be a function that is defined and continuous on an interval I. Then for
every pair of elements a and b of I, and for every real number η between f (a) and f (b), there exists a number ξ
between a and b such that f (ξ) = η.

Explanation In the theorem, the condition “ f is a function that is defined and continuous on an interval I”
means that “ f is a function, I is an interval, I ⊆ dom ( f ) and f is continuous on I”.

• Let x, y and z be real numbers. We say that z lies between x and y if

(1) x ≤ z ≤ y for the case where x ≤ y;

(2) y ≤ z ≤ x for the case where y ≤ x.

Note that if x = y, then z lies between x and y means that z = x = y.

• Because I is an interval, if a and b belong to I and a < ξ < b, then ξ belongs to I also.

• The result means that if f is a continuous function whose domain is an interval, then its range is either a
singleton (in this case, f is a constant function) or an interval.
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The following result is also called the Intermediate Value Theorem.

Corollary 3.6.3 Let f be a function that is defined and continuous on an interval I. Suppose that a and b
are elements of I such that f (a) and f (b) have opposite signs. Then there exists ξ between a and b such that
f (ξ) = 0.

Explanation The condition “ f (a) and f (b) have opposite signs” means that one of the two values is positive
and the other is negative.

Proof The result is a special case of the Intermediate Value Theorem. This is because f (a) and f (b) have
opposite signs implies that 0 lies between f (a) and f (b). �

In the Intermediate Value Theorem, the assumption that f is continuous cannot be omitted. The following
example is an illustration.

Example Let f : [0, 2] −→ R be defined by

f (x) =


−1 if 0 ≤ x ≤ 1,

1 if 1 < x ≤ 2.

Note that f (0) = −1 and f (2) = 1 have opposite signs. However,
there does not exist any ξ ∈ [0, 2] such that f (ξ) = 0.

We can’t apply the Intermediate Value Theorem. This is because
f is not continuous on [0, 2]. Indeed, it is not continuous at 0
since lim

x→0−
f (x) and lim

x→0+
f (x) are not equal.
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Corollary 3.6.4 Let f be a function that is defined and continuous on an interval I. Suppose that f has no zero
in I. Then f is either always positive in I or always negative in I.

Explanation The condition “ f has no zero in I” means that the equation f (x) = 0 has no solution in I, that is,
f (x) , 0 for all x ∈ I. The conclusion “ f is either always positive in I or always negative in I” means that
either one of the following two cases is true:

(1) f (x) > 0 for all x ∈ I;

(2) f (x) < 0 for all x ∈ I.

Proof Suppose f takes both positive and negative values in I, that is, there exist a, b ∈ I such that f (a) < 0
and f (b) > 0. Then by the Intermediate Value Theorem (Corollary 1), f has a zero between a and b which
contradicts the assumption that f has no zero in I. �

The above corollary is also called the Intermediate Value Theorem. The following example illustrates how
to apply the theorem to solve inequalities.

Example Find the solution set to the inequality x3 + 3x2 − 4x − 12 ≤ 0.

Solution Let p : R −→ R be the function given by

p(x) = x3 + 3x2 − 4x − 12.
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Factorizing we get
p(x) = (x − 2)(x + 2)(x + 3).

The zeros of the function p are −3,−2 and 2 (and no more). Since p is continuous on R, it follows from
the Intermediate Value Theorem that on each of the following intervals, p is either always positive or always
negative:

(−∞,−3), (−3,−2), (−2, 2), (2,∞).

To determine the sign of p on each of these intervals, we can just pick a point there and find the value (sign) of
p at that point. Taking the points −4, −2.5, 0 and 3, we find that

p(−4) < 0, p(−2.5) > 0, p(0) < 0, p(3) > 0.

Thus we have

• p(x) < 0 for x < −3;

• p(x) > 0 for −3 < x < −2;

• p(x) < 0 for −2 < x < 2;

• p(x) > 0 for x > 2.

The solution set is {x ∈ R : x ≤ −3 or − 2 ≤ x ≤ 2} = (−∞,−3] ∪ [−2, 2]. �

Remark The above steps can be expressed in a compact form using a table:

x < −3 x = −3 −3 < x < −2 x = −2 −2 < x < 2 x = 2 x > 2

p(x) −
p(−4) < 0

0 +

p(−2.5) > 0
0 −

p(0) < 0
0 +

p(3) > 0

The next result describes an important property of functions continuous on closed and bounded intervals. It
has many important consequences (for example, see the proof of the Mean Value Theorem in the appendix).

Extreme Value Theorem Let f be a function that is defined and continuous on a closed and bounded interval
[a, b]. Then f attains its maximum and minimum in [a, b], that is, there exist x1, x2 ∈ [a, b] such that

f (x1) ≤ f (x) ≤ f (x2) for all x ∈ [a, b].

Explanation The theorem is a deep result. Its proof is beyond the scope of this course and is thus omitted.

The following two examples illustrate that in the Extreme Value Theorem,

• closed intervals cannot be replaced by open intervals;

• the assumption that f is continuous cannot be omitted.
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Example Let f : (0, 1) −→ R be the function given by

f (x) =
1
x

It is straightforward to show that f is continuous on (0, 1). However, the function f
does not attain its maximum nor minimum in (0, 1). This is because the range of f is
(1,∞); f (x) can be arbitrarily large and it can be arbitrarily close to and greater than
1 but it can’t be equal to 1.
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Figure 3.27
Example Let f : [0, 1] −→ R be the function given by

f (x) =


1 if x = 0,
1
x

if 0 < x ≤ 1.

The function f does not attain its maximum in [0, 1]. This is because the range of f
is [1,∞); f (x) can be arbitrarily large.

Note that f is not right-continuous at 0 since lim
x→0+

f (x) = ∞ (limit does not exist).
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Figure 3.28Exercise 3.6

1. Let f (x) =



x2 if x < 1,

1 if 1 ≤ x < 2,
1
x

if x ≥ 2.

(a) Sketch the graph of f for x ∈ [0, 5].

(b) Find all the point(s) in R at which f is discontinuous.

2. Let f (x) =
x2 + x − 2
1 − √x

.

(a) What is the domain of f ?

(b) Find lim
x→1

f (x).

(c) Can we define f (1) to make f continuous at 1? If yes, what is the value?

3. Let f (x) = sin 1
x
.

(a) What is the domain of f ?

(b) Find lim
x→0

f (x).

(c) Can we define f (0) to make f continuous at 0? If yes, what is the value?

4. Let p(x) = x5 − x4 − 5x3 + x2 + 8x + 4. It is given that the equation p(x) = 0 has exactly two solutions,
namely 2 and −1. Use this information to solve the inequality p(x) > 0.

5. Let p(x) = x5 − 6x4 − 3x3 + 5x2 + 7.

(a) Show that the equation p(x) = 0 has a solution between 1 and 2.

(b) It is given that p(x) = 0 has exactly one solution between 1 and 2. Is the solution closer to 1 or 2?
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Differentiation

4.1 Derivatives

Consider the curve shown Figure 4.1. It is clear from intuition that the “slope” changes as we move along the
curve. At P′, the slope is very steep whereas at P, the slope is gentle (in this sentence, slope means a piece of
ground going up or down).

P′

P

Figure 4.1

In elementary coordinate geometry, readers have learnt the concept “slope of a line”. It is a number which
measures how steep is the line. For a non-vertical line, its slope is given by

y2 − y1

x2 − x1

where (x1, y1) and (x2, y2) are two distinct points on the line and the value is independent of the choice of the
two points.

Figure 4.2

For curves, we shouldn’t say “slope of a curve” because at different points of the curve, the slopes are different.
Instead we should say “slope of a curve at a point”. Below is how we define this concept.
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First we have a curve C and a point P on the curve. To define the slope of C at P, take a point Q on the
curve different from P. The line PQ is called a secant line at P. Its slope, denoted by mPQ, can be found using
the coordinates of P and Q. If we let Q move along the curve, the slope mPQ changes.

C

Q

P

Figure 4.3

Suppose that as Q approaches P, the number mPQ approaches a fixed value. This value, denoted by mC,P or
simply mP if the curve is understood, is called the slope of C at P; and the line with slope mP and passing
through P is called the tangent line to the curve C at P.

Remark The number mC,P (if exist) is the unique real number satisfying

(∗) mPQ is arbitrarily close to mC,P if Q belonging to C is sufficiently close to (but different from) P.

In view of the concept “limit of a function at a point” and the notation lim
x→a

f (x), we may write

lim
Q→P

along C

mPQ = mC,P

to mean that (∗) holds. Below, we will discuss how to find lim
Q→P

along C

mPQ by rewriting it as the limit of a difference

quotient.

Formula for Slope Suppose C is given by y = f (x), where f is a function; and P(x0, f (x0)) is a point on C.
For any point Q on C with Q , P, its x-coordinate can be written as x0 + h where h , 0 (if h > 0, Q is on the
right of P; if h < 0, Q is on the left of P). Thus, Q can be written as (x0 + h, f (x0 + h)). The slope mPQ of the
secant line PQ is

mPQ =
f (x0 + h) − f (x0)

(x0 + h) − x0

=
f (x0 + h) − f (x0)

h
Note that as Q approaches P, the number h approaches 0. From these, we see that the slope of C at P (denoted
by mP) is

mP = lim
h→0

f (x0 + h) − f (x0)
h

(4.1.1)

provided that the limit exists.

Remark The limit in (4.1.1) is a two-sided limit. This is because Q can approach P from the left or from the
right and so h can approach 0 from the left or from the right.
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Example Find the slope of the curve given by y = x2 at the point P(3, 9).

Solution Put f (x) = x2. By (4.1.1), the required slope (denoted by mP) is

mP = lim
h→0

f (3 + h) − f (3)
h

= lim
h→0

(3 + h)2 − 32

h

= lim
h→0

(9 + 6h + h2) − 9
h

= lim
h→0

6h + h2

h

= lim
h→0

(6 + h)

= 6. �
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Definition Let x0 be a real number and let f be a function defined on an open interval containing x0. Suppose
the limit in (4.1.1) exists. Then we say that f is differentiable at x0.

Convention Open intervals will be denoted by (a, b) including the cases where a = −∞ and/or b = ∞, unless
otherwise stated. Thus (a, b) can be any one of the following:

• (a, b) where a, b ∈ R and a < b;

• (−∞, b) where a = −∞ and b ∈ R;

• (a,∞) where a ∈ R and b = ∞;

• (−∞,∞) where a = −∞ and b = ∞.

Remark

• The condition “ f is a function defined on an open interval containing x0” means that there is an open
interval (a, b) such that (a, b) ⊆ dom ( f ) and x0 ∈ (a, b). Hence, f is defined on the left-side and right-side
of x0 as well as at x0. The expression f (x0 + h) − f (x0)

h
in the limit in (4.1.1), considered as a function of h,

is defined on the left-side and the right-side of 0 but is undefined at 0.

• “ f is differentiable at x0” means that the slope of the curve C at P exists, where C is given by y = f (x)
and P is the point on C whose x-coordinate is x0.

• There is an alternative way to describe the limit in (4.1.1). Putting x = x0 + h, we have x − x0 = h. Note
that as h approaches to 0, x approaches to x0. Hence we have

lim
h→0

f (x0 + h) − f (x0)
h

= lim
x→x0

f (x) − f (x0)
x − x0

.

Theorem 4.1.1 Let x0 be a real number and let f be a function defined on an open interval containing x0.
Suppose f is differentiable at x0. Then f is continuous at x0.
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Proof Since f is differentiable at x0, by definition, lim
x→x0

f (x) − f (x0)
x − x0

exists (a real number). Hence we have

lim
x→x0

(
f (x) − f (x0)

)
= lim

x→x0

(
f (x) − f (x0)

x − x0
· (x − x0)

)

= lim
x→x0

(
f (x) − f (x0)

x − x0

)
· lim

x→x0
(x − x0) Limit Rule (La5)

= lim
x→x0

(
f (x) − f (x0)

x − x0

)
· (x0 − x0) Theorem 3.5.1

= lim
x→x0

(
f (x) − f (x0)

x − x0

)
· 0

= 0.

Therefore, we get

lim
x→x0

f (x) = lim
x→x0

(
f (x) − f (x0) + f (x0)

)

= lim
x→x0

(
f (x) − f (x0)

)
+ lim

x→x0
f (x0) Limit Rule (La4)

= 0 + f (x0) From above and Limit Rule (La1)

= f (x0).

That is, f is continuous at x0. �

The following example illustrates that converse of Theorem 4.1.1 is not true.

Example Let f (x) = |x|. The domain of f is R.

The function f is continuous at 0. This is because

• lim
x→0−

f (x) = lim
x→0−

(−x) = 0;

• lim
x→0+

f (x) = lim
x→0+

x = 0,

and so lim
x→0

f (x) = 0 = f (0).
-2 -1 1 2

1

2

Figure 4.5

However, f is not differentiable at 0. This is because lim
h→0

f (0 + h) − f (0)
h

does not exist as the left-side and
right-side limits are unequal:

lim
h→0+

f (0 + h) − f (0)
h

= lim
h→0+

h − 0
h

= lim
h→0+

1

= 1

and lim
h→0−

f (0 + h) − f (0)
h

= lim
h→0−

−h − 0
h

= lim
h→0−

−1

= −1.

�

Definition Let f be a function.

(1) Suppose that f is differentiable at every point belonging to an open interval (a, b). Then we say that f is
differentiable on (a, b).
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(2) Suppose that f is differentiable at every point belonging to its domain. Then we say that f is a differen-
tiable function.

Remark If f is a differentiable function, then its domain can be written as a union of open intervals.

Example Let f (x) = |x|. In a previous example, we have seen that f is not differentiable at 0. Thus f is not a
differentiable function. Below we will show that f is differentiable at every x0 , 0. Thus, f is differentiable on
(0,∞) as well as on (−∞, 0).

(x0 > 0) In this case, if h is a small enough real number, then x0 + h > 0 and so we have

f (x0 + h) − f (x0) = |x0 + h| − |x0|
= (x0 + h) − x0 = h,

which yields

lim
h→0

f (x0 + h) − f (x0)
h

= lim
h→0

h
h

= lim
h→0

1 = 1.

(x0 < 0) In this case, if h is a small enough real number, then x0 + h < 0 and so we have

f (x0 + h) − f (x0) = |x0 + h| − |x0|
= −(x0 + h) − (−x0) = −h,

which yields

lim
h→0

f (x0 + h) − f (x0)
h

= lim
h→0

−h
h

= lim
h→0
−1 = −1.

A function f is differentiable means that for every x ∈ dom ( f ), the limit of the difference quotient
lim
h→0

f (x + h) − f (x)
h

exists; the limit is a real number and its value depends on x. In this way, we get a func-
tion, called the derivative of f and denoted by f ′, from dom ( f ) to R.

The graph of f is a curve. The assumption that f is a
differentiable function implies that at every point on the
curve, the slope exists; at the point whose x-coordinate is
x0, the slope is f ′(x0). Thus f ′ can be considered as slope
function.

y = f (x)

(x0, f (x0))

slope = f ′(x0)

(x1, f (x1))

slope = f ′(x1)

Figure 4.6

More generally, if f is differentiable only at some points in its domain, we can still define the derivative of
f on a smaller set.

Definition Let f be a function that is differentiable at some points belonging in its domain. Then the derivative
of f , denoted by f ′, is the function (from a subset of dom ( f ) into R) given by

f ′(x) = lim
h→0

f (x + h) − f (x)
h

,
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where the domain of f ′ is
{
x ∈ dom ( f ) : lim

h→0

f (x + h) − f (x)
h

exists
}
.

Example Let f (x) = |x|. Using results in a previous example, we see that

f ′(x) =


1 if x > 0,
−1 if x < 0,

where dom ( f ′) = {x ∈ R : x , 0}.

Example Let f (x) = x2. Find the derivative of f .

Explanation To find the derivative of f means to find the domain of f ′ and find a formula for f ′(x).

Solution By definition, we have

f ′(x) = lim
h→0

f (x + h) − f (x)
h

= lim
h→0

(x + h)2 − x2

h

= lim
h→0

(x2 + 2xh + h2) − x2

h

= lim
h→0

2xh + h2

h

= lim
h→0

(2x + h)

= 2x.

The domain of f ′ is R. �

Remark The logic in the above solution is as follows:

(1) First we find that lim
h→0

f (x + h) − f (x)
h

= 2x for all x ∈ R.

(2) From (1), we see that the domain of f ′ is R and f ′(x) = 2x for all x ∈ R.

Example Let f (x) = x3. Find f ′(x).

Solution By definition, we have

f ′(x) = lim
h→0

f (x + h) − f (x)
h

= lim
h→0

(x + h)3 − x3

h

= lim
h→0

(x3 + 3x2h + 3xh2 + h3) − x3

h

= lim
h→0

3x2h + 3xh2 + h3

h

= lim
h→0

(3x2 + 3xh + h2)

= 3x2.
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�

Remark The domain of f ′ is R.

Terminology The process of finding derivatives is called differentiation.

In a previous example to find the slope of the parabola y = f (x) = x2 at the point (3, 9), we use definition to
find f ′(3). In fact, if we know that f ′(x) = 2x, then by direct substitution, we get f ′(3) = 6. In the next section,
we will discuss how to find f ′(x) using rules for differentiation.

Terminology f ′(x0) is called the derivative of f at x0.

To represent a function f , we sometimes write y or f (x). Similarly, the derivative of a function can be
represented in many ways.

Notation

• To denote the derivative of a function f , we have the following notations.

f ′, y′,
dy
dx
, D f , Dy, f ′(x) and

d
dx

f (x).

• To denote the derivative of f at x0, we have the following notations.

f ′(x0), y′(x0),
dy
dx

∣∣∣∣
x=x0

, D f (x0) and Dy(x0).

Some readers may wonder why we have the ′ notation as well as the d
dx

notation. Calculus was “invented” by Newton and Leibniz independently
in the late 17th century. Newton used ẋ whereas Leibniz used dx

dt
to denote

the derivative of x with respect to t (time). The notation y′ is simple whereas
dy
dx

reminds us that it is defined as a limit of difference quotient:

dy
dx

= lim
∆x→0

∆y
∆x

where ∆x = h = (x + h) − x and ∆y = f (x + h) − f (x) are changes in x and
y respectively.

∆y

∆x

Figure 4.7
�

Caution dy
dx

is not a fraction.

• dy
dx

is f ′ or f ′(x); it is a function or an expression in x. It can be written as d
dx

y also. The notation d
dx

can be considered as an operation; to find dy
dx

means to perform the differentiation operation on y. Some
authors use the notation Dy instead, where D stands for the differentiation operator (some authors use
Dxy to emphasize that the variable is x).

• Although we can define dy and dx (called differentials), dy
dx

does not mean “divide dy by dx”. In Chap-
ter 10, we will describe differentials briefly (the purpose is to introduce the substitution method for
integration).
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Using d
dx

notation, the results obtained in the last two examples can be written as

d
dx

x2 = 2x

d
dx

x3 = 3x2.

In Exercise 3.5, Question 2(c) and (d), in terms of the d
dx

notation, the answers can be written as

d
dx

x−1 = −x−2

d
dx

x
1
2 =

1
2

x−
1
2 .

These are particular cases of a general result, called the power rule which will be discussed in Section 4.2.

Rate of Change

• The slope of a line is the rate of change of y with respect to x. The slope of a curve y = f (x) at a point
P
(
x0, f (x0)

)
is the limit of the slopes of the secant lines through P, so it is the rate of change of y with

respect to x at P. That is, f ′(x0) or dy
dx

∣∣∣∣
x=x0

is the rate of change of y with respect to x when x = x0.

• If x = t is time and y = s(t) is the displacement function of a moving object then s′(t0) or ds
dt

∣∣∣∣
t=t0

is the
rate of change of displacement with respect to time when t = t0, that is, the (instantaneous) velocity at
t = t0. In the Introduction of Chapter 3, we consider the velocity of an object at time t = 2, where the
displacement function is s(t) = t2. Using differentiation, the velocity at t = 2 can be found easily:

s′(2) =
d
dt

t2
∣∣∣∣
t=2

= 2t
∣∣∣
t=2

= 4.

Remark The notation 2t
∣∣∣
t=2 means substitute t = 2 into the expression 2t. More generally, the notation

f (x)
∣∣∣
x=x0

means f (x0).

Exercise 4.1

1. For each of the following f , use definition to find f ′(x).

(a) f (x) = 2x2 + 1 (b) f (x) = x3 − 3x

(c) f (x) = x4 (d) f (x) =
1
x2

4.2 Rules for Differentiation

Derivative of Constant The derivative of a constant function is 0 (the zero function), that is

d
dx

c = 0,

where c is a constant.
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Explanation In the above formula, we use c to denote the constant function f given by f (x) = c. The domain
of f is R. The result means that f is differentiable on R and that f ′(x) = 0 for all x ∈ R.

Proof Let f : R −→ R be the function given by f (x) = c for x ∈ R. By definition, we get

f ′(x) = lim
h→0

f (x + h) − f (x)
h

= lim
h→0

c − c
h

= lim
h→0

0
h

= lim
h→0

0

= 0
�

Geometric meaning The graph of the constant function c is the horizontal line given by y = c. At every point
on the line, the slope is 0.

Derivative of Identity Function The derivative of the identity function is the constant function 1, that is

d
dx

x = 1.

Explanation In the above formula, we use x to denote the identity function, that is, the function f given by
f (x) = x. The domain of f is R. The result means that f is differentiable on R and f ′(x) = 1 for all x ∈ R.

Proof Let f : R −→ R be the function given by f (x) = x for x ∈ R. By definition, we get

f ′(x) = lim
h→0

f (x + h) − f (x)
h

= lim
h→0

x + h − x
h

= lim
h→0

h
h

= lim
h→0

1

= 1
�

Geometric meaning The graph of the identity function is the line given by y = x. At every point on the line, the
slope is 1.

Power Rule for Differentiation (positive integer version) Let n be a positive integer. Then the power function
xn is differentiable on R and we have

d
dx

xn = nxn−1.

Explanation In the above formula, we use xn to denote the n-th power function, that is, the function f given
by f (x) = xn. The domain of f is R. The result means that f is differentiable on R and f ′(x) = nxn−1 for all
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x ∈ R. When n = 1, the formula becomes d
dx

x = 1x0. In the expression on the right side, x0 is understood to

be the constant function 1 and so the formula reduces to d
dx

x = 1 which is the rule for derivative of the identity
function. To prove that the result is true for all positive integers n, we can use mathematical induction. For base
step, we know that the result is true when n = 1. For the induction step, we can apply product rule (will be
discussed later). Below we will give alternative proofs for the power rule (positive integer version).

Proof Let f : R −→ R be the function given by f (x) = xn for x ∈ R. By definition, we get

f ′(x) = lim
h→0

f (x + h) − f (x)
h

= lim
h→0

(x + h)n − xn

h
.

To find the limit, we “simplify” the numerator to obtain a factor h and then cancel it with the factor h in the
denominator. For this, we can use:

• a factorization formula an − bn = (a − b)(an−1 + an−2b + · · · + abn−2 + bn−1)

• the Binomial Theorem (a + b)n = an +
(
n
1

)
an−1b +

(
n
2

)
an−2b2 + · · · +

(
n

n−2

)
a2bn−2 +

(
n

n−1

)
abn−1 + bn

where
(
n
1

)
= n and

(
n
2

)
=

n(n − 1)
2

and
(
n
3

)
=

n(n − 1)(n − 2)
3 · 2 etc. are the binomial coefficients (see Binomial

Theorem in the appendix). However, in the proof below, we only need to know the coefficient
(
n
1

)
= n;

the other coefficients are not important.

(Method 1) By the factorization formula, we get

(x + h)n − xn = (x + h − x)
(
(x + h)n−1 + (x + h)n−2x + · · · + (x + h)xn−2 + xn−1

)

= h
(
(x + h)n−1 + (x + h)n−2x + · · · + (x + h)xn−2 + xn−1

)

Therefore, f ′(x) = lim
h→0

(
(x + h)n−1 + (x + h)n−2x + · · · + (x + h)xn−2 + xn−1

)

= (x + 0)n−1 + (x + 0)n−2 · x + · · · + (x + 0) · xn−2 + xn−1 Theorem 3.5.1

= xn−1 + xn−1 + · · · + xn−1 + xn−1︸                                  ︷︷                                  ︸
n terms

= nxn−1

(Method 2) From the Binomial Theorem, we get

(x + h)n − xn = xn +
(
n
1

)
xn−1h +

(
n
2

)
xn−2h2 + · · · +

(
n

n−2

)
x2hn−2 +

(
n

n−1

)
xhn−1 + hn − xn

=
(
n
1

)
xn−1h +

(
n
2

)
xn−2h2 + · · · +

(
n

n−2

)
x2hn−2 +

(
n

n−1

)
xhn−1 + hn

= h
(
nxn−1 +

(
n
2

)
xn−2h + · · · +

(
n

n−2

)
x2hn−3 +

(
n

n−1

)
xhn−2 + hn−1

)
because

(
n
1

)
= n

Therefore, f ′(x) = lim
h→0

(
nxn−1 +

(
n
2

)
xn−2h + · · · +

(
n

n−2

)
x2hn−3 +

(
n

n−1

)
xhn−2 + hn−1

)

= nxn−1 +
(
n
2

)
xn−2 · 0 + · · · +

(
n

n−2

)
x2 · 0 +

(
n

n−1

)
x · 0 + 0 Theorem 3.5.1

= nxn−1. �
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Example Let y = x123. Find
dy
dx

.

Explanation The notation y = x123 represents a power function. To find dy
dx

means to find the derivative of the
function.

Solution
dy
dx

=
d
dx

x123

= 123x123−1 Power Rule

= 123x122 �

Caution In the above solution, the first step is “substitution”. It can also be written as dx123

dx
. It is wrong to write

dy
dx

x123 which means dy
dx

multiplied by x123. The notation d
dx

x123 is the derivative of the power function x123. If

we consider d
dx

as an operator, d
dx

x123 means “perform the differentiation operation on the function x123”.

Remark

• In the power rule, if we put n = 0, the left side is d
dx

x0 and right side is 0x−1. The function x0 is understood

to be the constant function 1. Thus d
dx

x0 = 0 by the rule for derivative of constant. The domain of the
function x−1 is R \ {0}. Therefore, 0x−1 is the function whose domain is R \ {0} and is always equal to 0.
If we extend the domain to R and treat 0x−1 as the constant function 0, then the power rule is true when
n = 0.

• Later in this section, we will show that the power rule is also true for negative integers n using the quotient
rule (in fact, it is true for all real numbers n; the result will be called the general power rule).

• In Chapter 6, we will discuss integration which is the reverse process of differentiation. There is a result
called the power rule for integration. However, in this chapter, “power rule” always means “power rule
for differentiation”.

Constant Multiple Rule for Differentiation Let f be a function and let k be a constant. Suppose that f is
differentiable. Then the function k f is also differentiable. Moreover, we have

d
dx

(k f )(x) = k · d
dx

f (x).

Explanation The function k f is defined by (k f )(x) = k · f (x) for x ∈ dom ( f ). The result means that if f ′(x)
exists for all x ∈ dom ( f ), then (k f )′(x) = k · f ′(x) for all x ∈ dom ( f ), that is, (k f )′ = k · f ′.

Proof By definition, we have

(k f )′(x) = lim
h→0

(k f )(x + h) − (k f )(x)
h

= lim
h→0

k · f (x + h) − k · f (x)
h

Definition of k f

= lim
h→0

(
k · f (x + h) − f (x)

h

)

= k · lim
h→0

f (x + h) − f (x)
h

Limit Rule (La5s)

= k · f ′(x) �
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Remark There is a pointwise version of the constant multiple rule: the result remains valid if differentiable
function is replaced by differentiable at a point.

Let f be a function and let k be a constant. Suppose that f is differentiable at x0. Then the function k f is
also differentiable at x0. Moreover, we have (k f )′(x0) = k · f ′(x0)

There are also pointwise versions for the sum rule, product rule and quotient rule which will be discussed
later. Readers can formulate the results themselves.

Example Let y = 3x4. Find
dy
dx

.

Solution
dy
dx

=
d
dx

3x4

= 3 · d
dx

x4 Constant Multiple Rule

= 3 · (4x4−1) Power Rule

= 12x3 �

Sum Rule for Differentiation (Term by Term Differentiation) Let f and g be functions with the same domain.
Suppose that f and g are differentiable. Then the function f + g is also differentiable. Moreover, we have

d
dx

( f + g)(x) =
d
dx

f (x) +
d
dx

g(x).

Explanation The function f + g is defined by ( f + g)(x) = f (x) + g(x) for x belonging to the common domain
A of f and g. The result means that if f ′(x) and g′(x) exist for all x ∈ A, then ( f + g)′(x) = f ′(x) + g′(x) for all
x ∈ A, that is, ( f + g)′ = f ′ + g′.

Proof By definition, we have

( f + g)′(x) = lim
h→0

( f + g)(x + h) − ( f + g)(x)
h

= lim
h→0

(
f (x + h) + g(x + h)

) − (
f (x) + g(x)

)
h

Definition of f + g

= lim
h→0

f (x + h) − f (x) + g(x + h) − g(x)
h

= lim
h→0

(
f (x + h) − f (x)

h
+

g(x + h) − g(x)
h

)

= lim
h→0

f (x + h) − f (x)
h

+ lim
h→0

g(x + h) − g(x)
h

Limit Rule (La4)

= f ′(x) + g′(x)
�

Remark

• If the domains of f and g are not the same but their intersection is nonempty, we define f + g to be the
function with domain dom ( f ) ∩ dom (g) given by ( f + g)(x) = f (x) + g(x). The following is a more
general version of the sum rule:



4.2. Rules for Differentiation 115

Let f and g be functions. Suppose that f and g are differentiable on an open interval (a, b). Then the
function f + g is also differentiable on (a, b). Moreover, on the interval (a, b), we have

d
dx

( f + g)(x) =
d
dx

f (x) +
d
dx

g(x).

There are also more general versions for the product rule and quotient rule. Readers can formulate the
results themselves.

• The result is also true for difference of two functions, that is,

d
dx

( f − g)(x) =
d
dx

f (x) − d
dx

g(x).

The result for difference can be proved similar to that for sum. Alternatively, it can be proved from the
sum rule together with the constant multiple rule:

( f − g)′(x) = ( f + (−1)g)′(x)

= f ′(x) +
(
(−1)g

)′(x) Sum Rule

= f ′(x) + (−1) · g′(x) Constant Multiple Rule

= f ′(x) − g′(x).

• Term by Term Differentiation can be applied to sum and difference of finitely many terms.

Example Let y = x2 + 3. Find
dy
dx

.

Solution
dy
dx

=
d
dx

(x2 + 3)

=
d
dx

x2 +
d
dx

3 Term by Term Differentiation

= 2x + 0 Power Rule and Derivative of Constant

= 2x �

Example Let f (x) = x5 − 6x7. Find f ′(x).

Explanation This question is similar to the last one. If we put y = f (x), then f ′(x) =
dy
dx

. Below, we use the

notation d
dx

to perform differentiation.

Solution f ′(x) =
d
dx

(x5 − 6x7)

=
d
dx

x5 − d
dx

6x7 Term by Term Differentiation

= 5x4 − 6 · d
dx

x7 Power Rule and Constant Multiple Rule

= 5x4 − 6 · (7x6) Power Rule

= 5x4 − 42x6 �
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The last two examples illustrate that polynomials can be differentiated term by term.

Derivative of Polynomial Let y = anxn + an−1xn−1 + · · · + a2x2 + a1x + a0 be a polynomial. Then we have

dy
dx

= nanxn−1 + (n − 1)an−1xn−2 + · · · + 2a2x + a1.

Proof
dy
dx

=
d
dx

(
anxn + an−1xn−1 + · · · + a2x2 + a1x + a0

)

=
d
dx

anxn +
d
dx

an−1xn−1 + · · · + d
dx

a2x2 +
d
dx

a1x +
d
dx

a0 Term by Term Differentiation

= an
d
dx

xn + an−1
d
dx

xn−1 + · · · + a2
d
dx

x2 + a1
d
dx

x + 0
Constant Multiple Rule and
Derivative of Constant

= annxn−1 + an−1(n − 1)xn−2 + · · · + a2 · (2x) + a1 · 1 Power Rule �

Example Let f (x) = 2x (x2 − 5x + 7). Find the derivative of f at 2.

Explanation The question is to find f ′(2). We can find f ′(x) using one of the following two ways:

• product rule (will be discussed later);

• expand the expression to get a polynomial.

Then putting x = 2, we get the answer. Below we use the second method to find f ′(x).

Solution f ′(x) =
d
dx

(
2x (x2 − 5x + 7)

)

=
d
dx

(
2x3 − 10x2 + 14x

)

= 2 · (3x2) − 10 · (2x) + 14 · 1 Derivative of Polynomial

= 6x2 − 20x + 14

The derivative of f at 2 is f ′(2) = 6(22) − 20(2) + 14

= −2 �

Product Rule Let f and g be functions with the same domain. Suppose that f and g are differentiable. Then
the function f g is also differentiable. Moreover, we have

d
dx

( f g)(x) = g(x) · d
dx

f (x) + f (x) · d
dx

g(x).

Explanation The function f g is defined by ( f g)(x) = f (x) · g(x) for x belonging to the common domain A of f
and g. The result means that if f ′(x) and g′(x) exist for all x ∈ A, then ( f g)′(x) = g(x) f ′(x) + f (x)g′(x) for all
x ∈ A, that is, ( f g)′ = g f ′ + f g′.

Proof By definition, we have

( f g)′(x) = lim
h→0

( f g)(x + h) − ( f g)(x)
h

= lim
h→0

f (x + h)g(x + h) − f (x)g(x)
h

Definition of f g
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To find the limit, we use the following technique: “subtract and add” f (x + h)g(x) in the numerator.

( f g)′(x) = lim
h→0

f (x + h)g(x + h) − f (x + h)g(x) + f (x + h)g(x) − f (x)g(x)
h

= lim
h→0

(
f (x + h)g(x + h) − f (x + h)g(x)

h
+

f (x + h)g(x) − f (x)g(x)
h

)

= lim
h→0

(
f (x + h) · g(x + h) − g(x)

h

)
+ lim

h→0

(
g(x) · f (x + h) − f (x)

h

)
Limit Rule (La4)

= lim
h→0

f (x + h) · lim
h→0

g(x + h) − g(x)
h

+ lim
h→0

g(x) · lim
h→0

f (x + h) − f (x)
h

Limit Rule (La5)

= f (x)g′(x) + g(x) f ′(x) Theorem 4.1.1 &
Limit Rule (La1)

In the last step, the first limit is found by substitution because f is continuous; the third limit is g(x) because
considered as a function of h, g(x) is a constant. �

Example Let y = (x + 1)(x2 + 3). Find
dy
dx

.

Explanation The expression defining y is a product of two functions. So we can apply the product rule. Alter-
natively, we can expand the expression to get a polynomial and then differentiate term by term.

Solution 1
dy
dx

=
d
dx

(
(x + 1)(x2 + 3)

)

= (x2 + 3) · d
dx

(x + 1) + (x + 1) · d
dx

(x2 + 3) Product Rule

= (x2 + 3) · (1 + 0) + (x + 1) · (2x + 0) Derivative of Polynomial

= 3x2 + 2x + 3 �

Solution 2
dy
dx

=
d
dx

(
(x + 1)(x2 + 3)

)

=
d
dx

(x3 + x2 + 3x + 3)

= 3x2 + 2x + 3 Derivative of Polynomial �

Quotient Rule Let f and g be functions with the same domain. Suppose that f and g are differentiable and that
g has no zero in its domain. Then the function f

g
is also differentiable. Moreover, we have,

d
dx

(
f
g

)
(x) =

g(x) · d
dx

f (x) − f (x) · d
dx

g(x)
(
g(x)

)2 .

Explanation The condition “g has no zero in its domain” means that g(x) , 0 for all x ∈ dom (g). The function
f
g

is defined by
(

f
g

)
(x) =

f (x)
g(x)

for x ∈ A, where A is the common domain of f and g. The result means that if

f ′(x) and g′(x) exist for all x ∈ A, then
(

f
g

)′
(x) =

g(x) f ′(x) − f (x)g′(x)
g(x)2 for all x ∈ A, that is,

(
f
g

)′
=

g f ′ − f g′

g2 .
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Proof The proof is similar to that for the product rule. �

Example Let y =
x2 + 3x − 4

2x + 1
. Find

dy
dx

.

Solution
dy
dx

=
d
dx

(
x2 + 3x − 4

2x + 1

)

=
(2x + 1) · d

dx
(x2 + 3x − 4) − (x2 + 3x − 4) · d

dx
(2x + 1)

(2x + 1)2 Quotient Rule

=
(2x + 1)(2x + 3) − (x2 + 3x − 4)(2)

(2x + 1)2 Derivative of Polynomial

=
(4x2 + 8x + 3) − (2x2 + 6x − 8)

(2x + 1)2

=
2x2 + 2x + 11

(2x + 1)2
�

Power Rule for Differentiation (negative integer version) Let n be a negative integer. Then the power func-
tion xn is differentiable on R \ {0} and we have

d
dx

xn = nxn−1.

Explanation Since n is a negative integer, it can be written as −m where m is a positive integer. The function
xn = x−m =

1
xm is defined for all x , 0, that is, the domain of xn is R \ {0}.

Proof Let f : R \ {0} −→ R be the function given by f (x) = x−m, where m = −n. By definition, we have

f ′(x) =
d
dx

1
xm

=
xm · d

dx
1 − 1 · d

dx
xm

(xm)2 Quotient Rule

=
xm · 0 − 1 · mxm−1

x2m
Derivative of Constant &
Power Rule (positive integer version)

= −mx(m−1)−2m

= −mx−m−1

= nxn−1
�

Example Find an equation for the tangent line to the curve y =
3x2 − 1

x
at the point (1, 2).

Explanation The curve is given by y = f (x) where f (x) =
3x2 − 1

x
. Since f (1) = 2, the point (1, 2) lies on the

curve. To find an equation for the tangent line, we have to find the slope at the point (and then use point-slope
form). The slope at the point (1, 2) is f ′(1). We can use rules for differentiation to find f ′(x) and then substitute
x = 1 to get f ′(1).

Solution To find dy
dx

, we can use quotient rule or term by term differentiation.
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(Method 1)
dy
dx

=
d
dx

3x2 − 1
x

=
x · d

dx
(3x2 − 1) − (3x2 − 1) · d

dx
x

x2 Quotient Rule

=
x · 3 · (2x) − (3x2 − 1) · 1

x2 Derivative of Polynomial

=
3x2 + 1

x2

(Method 2)
dy
dx

=
d
dx

(
(3x2 − 1)x−1

)

=
d
dx

(3x − x−1)

=
d
dx

3x − d
dx

x−1 Term by Term Differentiation

= 3 − (−1)x−2 Derivative of Polynomial & Power Rule

= 3 +
1
x2 .

The slope of the tangent line at the point (1, 2) is
dy
dx

∣∣∣∣∣
x=1

= 3 +
1
1

= 4.

Equation for the tangent line: y − 2 = 4(x − 1) (point-slope form)

4x − y − 2 = 0 (general linear form) �

The next result is a special case of the general power rule. Since the square root function appears often in
applied problems and the proof is not difficult, we give the result here.

Derivative of the Square Root Function The derivative of the square root function
√

x is 1
2
√

x
, that is,

d
dx
√

x =
1

2
√

x
.

Explanation The domain of the square root function is [0,∞). Since the function is undefined on the left-side
of 0, we can only consider differentiability of the function on (0,∞). The result means that f ′(x) =

1
2
√

x
for all

x ∈ (0,∞) where f (x) =
√

x.

Proof Let f : [0,∞) −→ R be the function given by f (x) =
√

x. For every x > 0, note that if h is a small
enough real number, then x + h ∈ dom ( f ) and hence if h is a small enough non-zero real number, we have

f (x + h) − f (x)
h

=

√
x + h − √x

h
=

(√
x + h − √x

) (√
x + h +

√
x
)

h
(√

x + h +
√

x
)

=
(x + h) − x

h
(√

x + h +
√

x
) =

h

h
(√

x + h +
√

x
)

=
1√

x + h +
√

x



120 Chapter 4. Differentiation

which, by definition, implies that

f ′(x) = lim
h→0

1√
x + h +

√
x

=
1

lim
h→0

(√
x + h +

√
x
) Limit Rule (La6)

=
1

lim
h→0

√
x + h + lim

h→0

√
x

Limit Rule (La4)

=
1√

x + 0 +
√

x

By continuity &
Limit Rule (La1)

=
1

2
√

x

In the second last step, the first limit is found by substitution because the square root function is continuous;
the second limit is the limit of a constant. �

Example Let y =
√

x (x + 1). Find
dy
dx

.

Solution
dy
dx

=
d
dx
√

x (x + 1)

= (x + 1) · d
dx
√

x +
√

x · d
dx

(x + 1) Product Rule

= (x + 1) · 1
2
√

x
+
√

x · 1 Derivative of Square Root Function
& Derivative of Polynomial

=

√
x

2
+

1
2
√

x
+
√

x

=
3
√

x
2

+
1

2
√

x �

Remark If we expand the expression defining y, we get x
3
2 + x

1
2 . The derivative can be found if we know the

derivative of x
3
2 .

Power Rule for Differentiation (n + 1
2 version) Let n be an integer. Then the function xn+ 1

2 is differentiable
on (0,∞) and we have

d
dx

xn+ 1
2 =

(
n +

1
2

)
xn− 1

2 .

Explanation Denoting the function by f , if n = 0, then f is the square root function; if n is positive, then the
domain of f is [0,∞); if n is negative, then the domain of f is (0,∞). Putting r = n +

1
2

, then we have f (x) = xr

and the result means that f ′(x) = rxr−1 for all x > 0. This result has the same form as the power rule and it will
be referred to as the power rule.

Remark There is a more general result called the General Power Rule (see Chapter 9).

Proof Let f be the function given by f (x) = xn+ 1
2 . Note that f (x) = xn · √x and so by the Product Rule and the
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Rule for Derivative of the Square Root Function, the function f is differentiable on (0,∞) and we have

f ′(x) =
d
dx

(
xn · √x

)

=
√

x · d
dx

xn + xn · d
dx
√

x Product Rule

=
√

x · nxn−1 + xn · 1
2
√

x
Power Rule &
Derivative Square Root Function

= nxn− 1
2 +

1
2

xn− 1
2

=

(
n +

1
2

)
xn− 1

2

�

Below, we redo the preceding example using the n +
1
2

version of the power rule.

Example Let y =
√

x (x + 1). Find
dy
dx

.

Solution
dy
dx

=
d
dx

x
1
2 (x + 1)

=
d
dx

(
x

3
2 + x

1
2
)

=
d
dx

x
3
2 +

d
dx

x
1
2 Term by Term Differentiation

=
3
2

x
3
2−1 +

1
2

x
1
2−1 Power Rule

=
3
2

x
1
2 +

1
2

x−
1
2

�

Example Let y =
2x2 − 3√

x
. Find

dy
dx

.

Solution 1
dy
dx

=
d
dx

2x2 − 3√
x

=

√
x · d

dx
(2x2 − 3) − (2x2 − 3) · d

dx

√
x

(
√

x)2
Quotient Rule

=

√
x · 2 · (2x) − (2x2 − 3) · 1

2
√

x

x
Derivative of Polynomial &
Derivative of Square Root Function

=

4x
√

x − x
√

x +
3

2
√

x

x

= 3
√

x +
3

2x
√

x �
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Solution 2
dy
dx

=
d
dx

(2x2 − 3)x−
1
2

=
d
dx

(
2x

3
2 − 3x−

1
2
)

= 2 · d
dx

x
3
2 − 3 · d

dx
x−

1
2 Term by Term Differentiation

= 2 ·
(
3
2

x
1
2

)
− 3 ·

(
−1

2
x−

3
2

)
Power Rule

= 3x
1
2 +

3
2

x−
3
2 �

We close this section with the following “Caution” and “Question”. The “caution” points out a common
mistake that many students made.

Caution
d
dx

2x , x · 2x−1, we can’t apply the Power Rule because 2x is not a power function;
it is an exponential function (see Chapter 8).

Question Using rules discussed in this chapter, we can differentiate polynomial functions as well as rational
functions. For example, to differentiate f (x) = (x2 + 5)3, we can first expand the cube to get a polynomial of
degree 6 and then differentiate term by term. How about the following

(1) f (x) = (x2 + 5)30 ?

(2) f (x) =
√

x2 + 5 ?

For (1), we can expand and then differentiate term by term (if we have enough patience). However, this doesn’t
work for (2). Note that both functions are in the form x 7→ (x2 + 5)r which can be considered as composition of
two functions:

x 7→ (x2 + 5) 7→ (x2 + 5)r.

In Chapter 9, we will discuss the chain rule, a tool to handle this kind of differentiation.

Exercise 4.2

1. For each of the following y, find dy
dx

.

(a) y = −π (b) y = 2x9 + 3x
(c) y = x2 + 5x − 7 (d) y = x (x − 1)
(e) y = (2x − 3)(5 − 6x) (f) y = (x2 + 5)3

(g) y =
23
x4 (h) y =

x − 1
x

(i) y =
x − 1
x + 1

(j) y =
√

x
(√

x + 1
)

2. For each of the following f , find f ′(a) for the given a.

(a) f (x) = x3 − 4x, a = 1 (b) f (x) =
2
x3 +

4
x
, a = 2

(c) f (x) = 3x
1
3 − 5x

2
3 , a = 27 (d) f (x) = πx2 − 2

√
x, a = 4

(e) f (x) = (x2 + 3)(x3 + 2), a = 1 (f) f (x) =
x2 + 1
2x − 3

, a = 2

(g) f (x) =
x2 + 3x − 5
x2 − 7x + 5

, a = 1
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3. Consider the curve given by y = 3x4 − 6x2 + 2.

(a) Find the slope of the curve at the point whose x-coordinate is 2.
(b) Find an equation for the tangent line at the point (1,−1).
(c) Find the point(s) on the curve at which the tangent line is horizontal.

4. It is known that d
dx

sin x = cos x. For each of the following y, find dy
dx

.

(a) y = x sin x (b) y =
sin x
x + 1

(c) y =
x2 + 1
sin x

(d) y = x (x + 2) sin x

5. Let f be a differentiable function.

(a) Use product rule to show that d
dx

f (x)2 = 2 f (x) · d
dx

f (x).

(b) Use product rule and the result in (a) to show that d
dx

f (x)3 = 3 f (x)2 · d
dx

f (x).

(c) Can you guess (and prove) a formula for d
dx

f (x)n, where n is a positive integer?

6. (a) Use the result in 5(a) to find d
dx

(x3 + 5x2 − 2)2.

(b) Use the result in 5(b) to find d
dx

(x2 + 5)3. Compare your answer with that in Q.1(f).

4.3 Higher-Order Derivatives

Let f be a function that is differentiable at some points belonging to dom ( f ). Then f ′ is a function.

• If, in addition, f ′ is differentiable at some points belonging to dom ( f ′), then the derivative of f ′ exists
and is denoted by f ′′; it is the function given by f ′′(x) = lim

h→0

f ′(x + h) − f ′(x)
h

and is called the second
derivative of f .

• If, in addition, f ′′ is differentiable at some points belonging to dom ( f ′′), then the derivative of f ′′ is
denoted by f ′′′, called the third derivative of f .

• In general, the n-th derivative of f (where n is a positive integer), denoted by f (n), is defined to be the
derivative of the (n−1)-th derivative of f (where the 0-th derivative of f means f ). For n = 1, the first
derivative of f is simply the derivative f ′ of f . For n > 1, f (n) is called a higher-order derivative of f .

Notation Similar to first order derivative, we have different notations for second order derivative of f .

y′′, f ′′,
d2y
dx2 , D2 f , D2y, f ′′(x) and

d2

dx2 f (x).

Readers may compare these with that on page 109. Similarly, we also have different notations for other higher-
order derivatives.

Example Let f (x) = 5x3 − 2x2 + 6x + 1. Find the derivative and all the higher-order derivatives of f .

Explanation The question is to find for each positive integer n, the domain of the n-th derivative of f and a
formula for f (n)(x). To find f ′(x), we can apply differentiation term by term. To find f ′′(x), by definition, we
have f ′′(x) =

d
dx

f ′(x) which can be simplified using the result for f ′(x) and rules for differentiation.
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Solution f ′(x) =
d
dx

(5x3 − 2x2 + 6x + 1)

= 15x2 − 4x + 6 Derivative of Polynomial

f ′′(x) =
d
dx

(15x2 − 4x + 6)

= 30x − 4 Derivative of Polynomial

f ′′′(x) =
d
dx

(30x − 4)

= 30 Derivative of Polynomial

f (4)(x) = 0 Derivative of Constant

From this we see that for n ≥ 4, f (n)(x) = 0. Moreover, for every positive integer n, the domain of f (n) is R. �

Example Let f (x) =
x3 − 1

x
. Find f ′(3) and f ′′(−4).

Explanation

• To find f ′(3), we find f ′(x) first and then substitute x = 3. Although f (x) is written as a quotient of two
functions, it is better to find f ′(x) by expanding (x3 − 1)x−1.

• To find f ′′(−4), we find f ′′(x) first and then substitute x = −4. To find f ′′(x), we differentiate the result
obtained for f ′(x).

Solution f ′(x) =
d
dx

(
(x3 − 1)x−1

)

=
d
dx

(
x2 − x−1

)

= 2x − (−1)x−2 Term by Term Differentiation & Power Rule

= 2x + x−2

f ′(3) = 2 · (3) + 3−2

=
55
9

f ′′(x) =
d
dx

(
2x + x−2

)
By result for f ′(x)

= 2 + (−2)x−3 Term by Term Differentiation & Power Rule

= 2 − 2x−3

f ′′(−4) = 2 − 2 · (−4)−3

=
65
32 �

Meaning of Second Derivative

• The graph of y = f (x) is a curve. Note that f ′(x) =
dy
dx

is the slope function; it is the rate of change

of y with respect to x. Since f ′′(x) =
d2y
dx2 is the derivative of the slope function, it is the rate of change
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of slope and is related to a concept called convexity (bending) of a curve. More details can be found in
Chapter 5.

• If x = t is time and if y = s(t) is the displacement function of a moving object, then s′(t) =
ds
dt

is

the velocity function. The derivative of velocity is s′′(t) or d2 s
dt2 ; it is the rate of change of the velocity

(function), that is, the acceleration (function).

Exercise 4.3

1. For each of the following y, find d2y
dx2 .

(a) y = x3 − 3x2 + 4x − 1 (b) y = (2x + 3)(4 − x)

(c) y =
√

x (1 + x) (d) y =
1 − 2x

x2

(e) y = (x3 + 1)2

2. For each of the following f , find f ′′(a) for the given a.

(a) f (x) = 7x6 − 8x5 + 15x, a = 1

(b) f (x) = x2(1 − 2x), a = 2

(c) f (x) = (2 + 3x)2, a = 0

3. Let f (x) = anxn + an−1xn−1 + · · · + a1x + a0 be a polynomial of degree n.

(a) Find f (0) and f ′(0).

(b) Find f (n)(x) and f (n+1)(x).
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Chapter 5

Applications of Differentiation

In this chapter, we will discuss applications of differentiation to curve sketching and extremal problems. For
curve sketching, we need to consider geometric meanings of the first and second order derivatives. For conve-
nience, some of the concepts and results are given not in their most general forms. Many of the concepts and
results are stated for functions that are differentiable, twice differentiable etc. Below are the meanings of these
terms.

Terminology Let f be a function that is defined on an open interval (a, b). We say that

• f is differentiable on (a, b) if f ′(x) exists for all x ∈ (a, b);

• f is twice differentiable on (a, b) if f ′′(x) exists for all x ∈ (a, b).

Explanation The condition “ f is a function defined on an open interval (a, b)” means that (a, b) ⊆ dom ( f ).

Terminology Let f be a function and let x0 be a real number. We say that

• f is defined on an open interval containing x0 if there is an open interval (a, b) such that x0 ∈ (a, b) and
(a, b) ⊆ dom ( f );

• f is differentiable on an open interval containing x0 if there is an open interval (a, b) such that x0 ∈ (a, b)
and f is differentiable on (a, b);

Remark If f is a function defined on an open interval containing x0, then we may consider continuity and
differentiability of f at x0.

Example Let f (x) =
√

x. The domain of f is [0,∞).

• Although 0 ∈ dom ( f ), the function f is not defined on an open interval containing 0. This is because
there does not exist any open interval (a, b) such that 0 ∈ (a, b) and (a, b) ⊆ dom ( f ).

• If x0 is a positive real number, then f is defined on an open interval containing x0. This is because
x0 ∈ (0,∞) and (0,∞) ⊆ dom ( f ).

For x > 0, by the Power Rule, we have f ′(x) =
1

2
√

x
. Thus, f is differentiable on (0,∞).

• If x0 is a positive real number, then f is differentiable on an open interval containing x0.

For x > 0, by the Constant Multiple Rule and the Power Rule, we have f ′′(x) =
−1

4
√

x3
. Thus, f is twice

differentiable on (0,∞).
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5.1 Curve Sketching

5.1.1 Increasing and Decreasing Functions

Definition Let f be a function and let I be an interval such that I ⊆ dom ( f ). We say that f is

• strictly increasing on I if for any two numbers x1, x2 ∈ I, where x1 < x2, we have f (x1) < f (x2);

• strictly decreasing on I if for any two numbers x1, x2 in I, where x1 < x2, we have f (x1) > f (x2).

Remark

• In the definition, I can be an open interval, a closed interval or a half-open half-closed interval in the
form [a, b) or (a, b].

• Although we can define the concepts “ f is strictly increasing (or strictly decreasing) on a set S , where
S ⊆ dom ( f )”, we will not use such concepts in this course because the concepts “strictly increasing (or
strictly decreasing) on an interval” are good enough for our consideration; moreover, a function strictly
increasing (or strictly decreasing) on a set S 1 and also on a set S 2 may not be strictly increasing (or
strictly decreasing) on S 1 ∪ S 2.

Geometric Meaning A function is strictly increasing (respectively strictly decreasing) on an interval I means
that for x ∈ I, the graph of f goes up (respectively goes down) as x goes from left to right.

Terminology For simplicity, instead of saying “strictly increasing”, we will say “increasing” etc.

Remark Some authors have a different definition for “increasing”. In that case, “increasing” and “strictly
increasing” refer to different concepts.

Example Let f : R −→ R be the function given by f (x) = x3.
Then f is increasing on R.

Reason If x1 < x2, then x3
1 < x3

2.

Figure 5.1

Example Let f : (0,∞) −→ R be the function given by f (x) =
1√
x
.

Then f is decreasing on (0,∞).

Reason If 0 < x1 < x2, then
√

x1 <
√

x2 and so 1√
x1
>

1√
x2

.

Figure 5.2

Example Let f : R −→ R be the function given by f (x) = x2.
Then f is decreasing on (−∞, 0) and increasing on (0,∞).

Reason

• If x1 < x2 < 0, then x2
1 > x2

2.

• If 0 < x1 < x2, then x2
1 < x2

2. Figure 5.3



5.1. Curve Sketching 129

Remark

• If a function is increasing (respectively decreasing) on an interval I, then it is also increasing (respectively
decreasing) on any interval J with J ⊆ I. For the function f in the above example, we can also say that
f is increasing on (0, 1]; f is decreasing on [−10,−2] etc.

• If a function is continuous on an interval [a, b) and if it is increasing (respectively decreasing) on the
open interval (a, b), then it is increasing (respectively decreasing) on [a, b). Similar results holds if [a, b)
is replaced by (a, b] or [a, b]. For the function in the above example, it is decreasing on (−∞, 0] and
increasing on [0,∞). These intervals are maximal in the sense that they cannot be enlarged.

Definition Let f be a function and let I be an interval with I ⊆ dom ( f ) such that f is increasing (respectively
decreasing) on I. We say that I is a maximal interval on which f is increasing (respectively decreasing) if there
does not exist any interval J with I $ J ⊆ dom ( f ) such that f is increasing (respectively decreasing) on J.

Example For the function f given in the preceding example, the interval (−∞, 0] is the maximal interval on
which f is decreasing and [0,∞) is the maximal interval on which f is increasing.

In the above examples, we can determine where the function f is increasing or decreasing using inspection
or using the graph of f . In general, given a function f , for example, f (x) = 27x − x3, it is not easy to see
where f is increasing or decreasing. For differentiable functions, the next theorem describes a simple way to
determine where f is increasing or decreasing.

Theorem 5.1.1 Let f be a function that is defined and differentiable on an open interval (a, b).

(1) If f ′(x) > 0 for all x ∈ (a, b), then f is increasing on (a, b).

(2) If f ′(x) < 0 for all x ∈ (a, b), then f is decreasing on (a, b).

(3) If f ′(x) = 0 for all x ∈ (a, b), then f is constant on (a, b), that is, f (x1) = f (x2) for all x1, x2 ∈ (a, b), or
equivalently, there exists a real number c such that f (x) = c for all x ∈ (a, b).

Explanation In the first result, the condition “ f ′(x) > 0 for all x ∈ (a, b)” means that the slope is always positive.
From intuition, we “see” that the graph of f goes up. However, this is not a proof.

Proof The results can be proved rigorously using a result called the Mean-Value Theorem. For details, see
Theorem B.3.1 in the Appendix. �

Example Let f : R −→ R be the function given by

f (x) = 27x − x3.

Find the interval(s), if any, on which f is increasing or decreasing.

Explanation

• The question is to find maximal interval(s) on which f is increasing and to find maximal interval(s) on
which f is decreasing.
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• Before getting the answer, we do not know whether there is any interval on which f is increasing or
decreasing, so in the question, “if any” is added. Moreover, we do not know whether there are more
than one intervals on which f is increasing or decreasing, so instead of asking for “interval”, we ask
for “interval(s)”. This kind of wording is cumbersome; therefore, sometimes, we simply ask: “Find the
intervals on which f is increasing or decreasing”.

• Because f is continuous, it suffices to find maximal open intervals on which f is increasing or decreasing.
For this, we have to solve f ′(x) > 0 or f ′(x) < 0 respectively.

Solution Differentiating f (x), we get f ′(x) =
d
dx

(27x − x3)

= 27 − 3x2

= 3(3 + x)(3 − x).

(−∞,−3) (−3, 3) (3,∞)

3 + + +

3 + x − + +

3 − x + + −
f ′ − + −
f ↘ ↗ ↘

From the table, we see that

• on the interval [−3, 3], f is increasing;

• on the intervals (−∞,−3] and [3,∞), f is decreasing.
�

Remark

• In the last row of the above table, the first ↘ indicates that f is decreasing on (−∞,−3) etc. This
information is obtained from Theorem 5.1.1.

• Since f is decreasing on (−∞,−3), by continuity, it is decreasing on (−∞, 3] etc.

Example Let f : R −→ R be the function given by

f (x) = x4 − 4x3 + 5.

Find where the function f is increasing or decreasing.

Explanation This example is similar to the last one. The question is to find maximal intervals on which f is
increasing or decreasing.

Solution Differentiating f (x), we get f ′(x) =
d
dx

(x4 − 4x3 + 5)

= 4x3 − 12x2

= 4x2(x − 3)

(−∞, 0) (0, 3) (3,∞)

4 + + +

x2 + + +

x − 3 − − +

f ′ − − +

f ↘ ↘ ↗
From the table, we see that

• on the interval [3,∞), f is increasing;

• on the interval (−∞, 3], f is decreasing.
�

Remark In the above example, to get the maximal interval on which f is decreasing, the following simple result
is used.
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Theorem 5.1.2 Let f be a function that is defined on an open interval (a, c). If f is increasing (respectively
decreasing) on (a, b) as well as on (b, c) and is continuous at b, then it is increasing (respectively decreasing)
on (a, c).

Proof We give the proof for the increasing case. Let x1, x2 ∈ (a, c) and x1 < x2. We want to show that
f (x1) < f (x2). For this, we consider the following cases:

(1) If x1, x2 ∈ (a, b), then f (x1) < f (x2) since f is increasing on (a, b).

(2) If x1, x2 ∈ (b, c), then f (x1) < f (x2) since f is increasing on (b, c).

(3) If x1 ∈ (a, b) and x2 = b, then f (x1) < f (x2) since f is increasing on (a, b) and continuous at b.

(4) If x1 = b and x2 ∈ (b, c), then f (x1) < f (x2) since f is increasing on (b, c) and continuous at b.

(5) If x1 ∈ (a, b) and x2 ∈ (b, c), then f (x1) < f (b) < f (x2) by Cases (3) and (4).
�

5.1.2 Relative Extrema

In the last section, we use Theorem 5.1.1 to find where a function f is increasing or decreasing. For that,
we solve inequalities f ′(x) > 0 and f ′(x) < 0. In each of the tables obtained in the last two examples, the
intervals are obtained from R by deleting the zeros of f ′. For example, in the last example, R \ {0, 3} =

(−∞, 0)∪ (0, 3)∪ (3,∞). Zeros of f ′ are important because they play an important role in extremum problems.

Definition Let f be a function and let x0 be a real number such that f is defined on an open interval containing
x0. If f ′(x0) = 0, then we say that x0 is a stationary number of f .

Explanation

• If x = t is time and y = f (t) is the displacement (function) of a moving object, then dy
dt

= f ′(t) is the
velocity (function). Thus f ′(t0) = 0 means that the velocity at time t0 is 0, that is, the object is stationary
at that moment.

• In the definition, the condition “ f is defined on an open interval containing x0” can be omitted because
the condition “ f ′(x0) = 0” implicitly implies that f is defined on the left-side and right-side of x0 as well
as at x0. However, we will continue to use this lengthy description to give the general setting.

Definition Let f be a function and let x0 be a real number such that f is defined on an open interval containing
x0. If f ′(x0) does not exist or f ′(x0) = 0, then we say that x0 is a critical number of f .

Explanation

• Most functions considered in this course are differentiable (on open intervals that are subsets of their
domains). For such functions, critical numbers and stationary numbers are the same.

• Instead of “critical number”, many authors use the term “critical point”. However, many students mis-
understand this terminology and take

(
x0, f (x0)

)
as a critical point.

Caution A critical point is a point on the real line (that is, a real number) rather than a point on the graph
of f (an ordered pair).
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Example Let f : R −→ R be the function given by f (x) = x2 + 4x − 11. Find the critical number(s) of f .

Explanation Because f is differentiable on R, the question is to find the stationary numbers of f .

Solution Differentiating f (x), we get f ′(x) =
d
dx

(x2 + 4x − 11)

= 2x + 4.

Solving f ′(x) = 0, we get x = −2 which is the critical number of f . �

Definition Let f be a function and let x0 be a real number such that f is defined on an open interval containing
x0. We say that

• ] f has a relative maximum at x = x0 if f (x0) ≥ f (x) for all x sufficiently close to x0;

• f has a relative minimum at x = x0 if f (x0) ≤ f (x) for all x sufficiently close to x0.

Remark The condition “ f (x0) ≥ f (x) for all x sufficiently close to x0” means that there exists an open interval
(α, β) with x0 ∈ (α, β) such that f (x0) ≥ f (x) for all x ∈ (α, β). The interval (α, β) may be different from (a, b).

Terminology Suppose that f has a relative maximum (respectively relative minimum) at x0. Then

• the number x0 is called a relative maximizer (respectively relative minimizer) of f ;

• the ordered pair
(
x0, f (x0)

)
is called a relative maximum point (respectively relative minimum point) of

the graph of f ;

• the number f (x0) is called a relative maximum value (respectively relative minimum value) of f .

Remark The terms relative maximum value and relative minimum value will not be used in this course because
they are ambiguous; a value can be a relative maximum value as well as a relative minimum value.

If a function f has a relative maximum (respectively relative min-
imum) at x0, then the graph of f has a peak (respectively a valley) at(
x0, f (x0)

)
, that is, the point

(
x0, f (x0)

)
is higher than (respectively

lower than) its neighboring points. However, it may not be the high-
est point (respectively lowest point) on the whole graph. For this
reason, we say that

(
x0, f (x0)

)
is a local maximum point (respectively

local minimum point) of the graph.

Local maximum point

Figure 5.4

• The adjectives “relative” and “local” will be used interchangeably. For example, a local maximizer
means a relative maximizer and a local minimum point means a relative minimum point etc.

• A local maximizer or a local minimizer will be called a local extremizer and a local maximum point or a
local minimum point will be called a local extremum point etc.

Remark Consider the function f : [0, 2] −→ R defined by

f (x) = −2x2 + 3x + 1.

The graph of f is shown in Figure 5.5. Although f (0) ≤ f (x) for all x sufficiently close to and greater 0, the
number 0 is not considered as a local minimizer of f .
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• In order to consider whether a number is a local extremizer of a
function, the function has to be defined on an open interval con-
taining the number.

1 2

-1

1

2

Figure 5.5
The following theorem gives a necessary condition for local extremizers.

Theorem 5.1.3 Let f be a function and let x0 be a real number such that f is defined on an open interval
containing x0. Suppose that f has a local extremum at x0. Then x0 is a critical number of f , that is, f ′(x0) does
not exist or f ′(x0) = 0.

Proof Suppose that f ′(x0) exists (that is, f is differentiable at x0). We want to show that f ′(x0) = 0.

Without loss of generality, we may assume that f has a local maximum at x0 (otherwise, we may consider
the function − f instead). By definition, there exists an open interval (a, b) with x0 ∈ (a, b) ⊆ dom ( f ) such that

f (x) ≤ f (x0) for all x ∈ (a, b). (5.1.1)

Note that f ′(x0) = lim
h→0

f (x0 + h) − f (x0)
h

; the limit exists and is a two-sided limit. Thus we have

f ′(x0) = lim
h→0−

f (x0 + h) − f (x0)
h

= lim
h→0+

f (x0 + h) − f (x0)
h

.

To show that f ′(x0) = 0, we show that one of the one-sided limits is at least zero and the other is at most zero.

• For h < 0 such that a < x0 + h, by (5.1.1), we have f (x0 + h) ≤ f (x0) which implies that

f (x0 + h) − f (x0)
h

≥ 0.

Hence we have lim
h→0−

f (x0 + h) − f (x0)
h

≥ 0.

• For h > 0 such that x0 + h < b, by (5.1.1), we have f (x0 + h) ≤ f (x0) which implies that

f (x0 + h) − f (x0)
h

≤ 0.

Hence we have lim
h→0+

f (x0 + h) − f (x0)
h

≤ 0.

Therefore, the required result follows. �

Remark For differentiable functions f , the result means that if f has a local extremum at x0, then f ′(x0) = 0.

Example Let f be the function given by f (x) = 2
√

x − x. We want to apply Theorem 5.1.3 to look for all the
possible local extremizers of f .

Note that the domain of f is [0,∞). Thus local extremizers of f must belong to (0,∞). For x > 0, by the
Power Rule, we have f ′(x) =

1√
x
− 1. Thus f is differentiable on (0,∞). To look for local extremizers of f , by

Theorem 5.1.3, we only need to find positive real numbers x0 such that f ′(x0) = 0. Solving 1√
x
− 1 = 0, we get

x = 1, which is the only possible candidate for local extremizer of f .

The next example shows that the converse Theorem 5.1.3 is not true: if f ′(x0) = 0, f may not have a local
extremum at x0.
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Example Let f : R −→ R be the function given by

f (x) = x3 − 3x2 + 3x.

Then we have f ′(x) =
d
dx

(x3 − 3x2 + 3x)

= 3x2 − 6x + 3

= 3(x − 1)2.

Thus f is differentiable on R. The number 1 is a critical number of f .
However, it is not a local extremizer of f since f is increasing on R. Figure 5.6

Suppose x0 is a critical number of a function f . At x0, the function f may have a local maximum, a
local minimum or neither. The next result describes a simple way to determine which case it is using the first
derivative of f .

First Derivative Test Let f be a function that is differentiable on an open interval (a, b) and let x0 ∈ (a, b).
Suppose that x0 is a critical number of f .

(1) If f ′(x) changes from positive to negative as x increases through x0, then x0 is a local maximizer of f .

(2) If f ′(x) changes from negative to positive as x increases through x0, then x0 is a local minimizer of f .

(3) If f ′(x) does not change sign as x increases through x0, then x0 is neither a local maximizer nor local
minimizer of f .

Explanation The assumption on x0 is that f ′(x0) = 0.

• The condition “ f ′(x) changes from positive to negative as x increases through x0” means that f ′(x) > 0
for x sufficiently close to and less than x0 and f ′(x) < 0 for x sufficiently close to and greater than x0.

• The condition “ f ′(x) does not change sign as x increases through x0” means that f ′(x) is either always
positive or always positive for x sufficiently close and different from x0.

Proof We give the proof for (1) and (3). The proof for (2) is similar to that for (1).

(1) If f ′(x) changes from positive to negative as x increases through x0, then there is an open interval in the
form (a, x0) such that f ′(x) > 0 for all x ∈ (a, x0) and there is an open interval in the form (x0, b) such
that f ′(x) < 0 for all x ∈ (x0, b); hence by Theorem 5.1.1 and continuity, f is increasing on (a, x0] and
decreasing on [x0, b). Therefore, f has a local maximum at x0.

(3) If f ′(x) does not change sign as x increases through x0, then there are open intervals in the form (a, x0)
and (x0, b) such that f ′(x) > 0 for all x ∈ (a, x0) ∪ (x0, b) or f ′(x) < 0 for all x ∈ (a, x0) ∪ (x0, b). In the
first case, by Theorem 5.1.1 f is increasing on (a, x0) as well as on (x0, b) and hence by continuity, it is
increasing on (a, b). In the second case, f is decreasing on (a, b). Therefore, in any case, f does not have
a local extremum at x0. �

Remark For “nice” functions (for example, polynomials), the above result includes all possibilities. But we can
construct weird functions f such that x0 is a critical number of f and that f ′ changes sign infinitely often on
the left and right of x0. Figure 5.7 shows the graph of the function f given below; the number 0 is a critical
number of f .
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f (x) =


x2 sin 1

x
if x , 0,

0 if x = 0.

Figure 5.7

Example Let f : R −→ R be the function given by

f (x) = 27x − x3.

Find and determine the nature of the critical number(s) of f .

Explanation The question is to find all the critical numbers of f and for each critical number, determine whether
it is a local maximizer, a local minimizer or not a local extremizer.

Solution Differentiating f (x), we get f ′(x) =
d
dx

(27x − x3)

= 27 − 3x2

= 3(3 + x)(3 − x).

Solving f ′(x) = 0, we get the critical numbers of f : x1 = −3 and x2 = 3.

• When x is sufficiently close to and less than −3, f ′(x) is negative; when x is sufficiently close to and
greater than −3, f ′(x) is positive. Hence, by the First Derivative Test, x1 = −3 is a local minimizer of f .

• When x is sufficiently close to and less than 3, f ′(x) is positive; when x is sufficiently close to and greater
than 3, f ′(x) is negative. Hence, by the First Derivative Test, x2 = 3 is a local maximizer of f .

�

Remark The function in the above example is considered in
the last subsection in which a table is obtained. It is clear
from the table that f has a local minimum at −3 and a local
maximum at 3. In the next example, we will use the table
method to determine nature of critical numbers.

(−∞,−3) (−3, 3) (3,∞)

3 + + +

3 + x − + +

3 − x + + −
f ′ − + −
f ↘ ↗ ↘

Example Let f : R −→ R be the function given by

f (x) = x4 − 4x3 + 5.

Find and determine the nature of the critical number(s) of the f .

Explanation The function is considered in an example in the last subsection. Below we just copy the main steps
from the solution there.

Solution f ′(x) = 4x3 − 12x2

= 4x2(x − 3)
(−∞, 0) (0, 3) (3,∞)

f ′ − − +

f ↘ ↘ ↗
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Solving f ′(x) = 0, we get the critical numbers of f : x1 = 0 and x2 = 3.

From the table, we see that

• the critical number x1 = 0 is not a local extremizer of f ;

• the critical number x2 = 3 is a local minimizer of f .
�

5.1.3 Convexity

In studying curves, we are also interested in finding out how the curves bend. Both curves shown in Figures
5.8(a) and (b) go up (as x goes from left to right). However the way how they bend are quite different.

Figure 5.8(a) Figure 5.8(b)

• In Figure 5.8(a), the curve goes up faster and faster, that is, the slope becomes more and more positive as
we move from left to right (the slope is increasing). We say that the curve is bending up.

• In Figure 5.8(b), although the curve goes up, the slope becomes less and less positive (the slope is
decreasing). We say that the curve is bending down.

Similarly we can consider curves that go down.

Figure 5.9(a) Figure 5.9(b)

• The curve in Figure 5.9(a) goes down. However, the slope becomes less and less negative. This means
that the slope is increasing and we say that the curve is bending up.

• The curve in Figure 5.9(b) also goes down. Moreover, the slope becomes more and more negative. This
means that the slope is decreasing and we say that the curve is bending down.

In summary, curves having shape shown in Figure 5.10(a) [or part of it] is said to be bending up and those
having shape shown in Figure 5.10(b) [or part of it] is said to be bending down.
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bending
up bending

down

Figure 5.10(a) Figure 5.10(b)

Alternatively, if the curve is the graph of y = f (x) where f is a differentiable function, the graph is bending
up (respectively bending down) means that the graph is always above (respectively always below) the tangent
lines.

Remark In many books, instead of bending up and bending down, the terms concave up and concave down
respectively are used.

Bending up and bending down are properties of curves. Below are properties of functions corresponding to
these geometric properties.

Definition Let f be a function that is defined and differentiable on an open interval (a, b). We say that

• f is strictly convex on (a, b) if f ′ is increasing on (a, b);

• f is strictly concave on (a, b) if f ′ is decreasing on (a, b).

Since f ′ is the slope function, f is strictly convex on (a, b) means that the slope is increasing and so in the
interval (a, b), the graph of f is bending up. Similarly, f is strictly concave means that in (a, b), its graph is
bending down.

Terminology For simplicity, instead of saying “strictly convex”, we will say “convex” etc.

The next theorem describes a simple way to find where a function is convex or concave. The method is to
consider the sign of f ′′.

Theorem 5.1.4 Let f be a function that is defined and is twice differentiable on an open interval (a, b).

(1) If f ′′(x) > 0 for all x ∈ (a, b), then f is convex on (a, b).

(2) If f ′′(x) < 0 for all x ∈ (a, b), then f is concave on (a, b).

Proof We give the proof for (1). The proof of (2) is similar to that for (1).

Note that f ′′ is the derivative of f ′. If f ′′(x) > 0 for all x ∈ I, that is, ( f ′)′(x) > 0 for all x ∈ (a, b), then by
Theorem 5.1.1, f ′ is increasing on (a, b), that is, f is convex on (a, b). �

Example Let f : R −→ R be the function given by

f (x) = 27x − x3.

Find the interval(s) on which f is convex or concave.
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Explanation

• The question is to find maximal open interval(s), if any, on which f is convex or concave.

• The given function f is a “nice” function (a polynomial function). It can be differentiated any number
of times: f (n)(x) exists for all positive integers n and for all real numbers x. In particular, f is twice
differentiable on R. To apply Theorem 5.1.4, we have to solve inequalities f ′′(x) > 0 and f ′′(x) < 0.
This is done by setting up a table.

Solution Differentiating f (x), we get f ′(x) =
d
dx

(27x − x3)

= 27 − 3x2.

Differentiating f ′(x), we get f ′′(x) =
d
dx

(27 − 3x2)

= −6x.
(−∞, 0) (0,∞)

−6 − −
x − +

f ′′ + −• On the interval (−∞, 0), f is convex.

• On the interval (0,∞), f is concave.
�

Remark

• When we consider “a function is convex/concave on an interval”, unlike increasing/decreasing, we do
not include the endpoint(s) of the interval. This is because the concept is defined for open intervals only.
Note that for a function f whose domain is a closed and bounded interval [a, b], f ′(x) is undefined when
x = a or b.

• There is a more general definition for convex/concave functions. The definition does not involve f ′ and
it can be applied to closed intervals also.

Example Let f : R −→ R be the function given by

f (x) = x4 − 4x3 + 5.

Find where the graph of f is bending up or bending down.

Explanation This question is similar to the last one. The graph of f is bending up (or down) means that f is
convex (or concave). So we have to find intervals on which f ′′ is positive (or negative).

Solution Differentiating f (x), we get f ′(x) =
d
dx

(x4 − 4x3 + 5)

= 4x3 − 12x2.

Differentiating f ′(x), we get f ′′(x) =
d
dx

(4x3 − 12x2)

= 12x2 − 24x

= 12x (x − 2).

(−∞, 0) (0, 2) (2,∞)

12x − + +

x − 2 − − +

f ′′ + − +

• On the intervals (−∞, 0) and (2,∞), the graph of f is bending up.
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• On the interval (0, 2), the graph of f is bending down.
�

Definition Let f be a function and let x0 be a real number such that f is continuous at x0 and differentiable
on both sides of x0. If f is convex on one side of x0 and concave on the other side, then we say that x0 is an
inflection number of f .

Explanation

• The condition “ f is differentiable on both sides of x0” means that there is an open interval in the form
(a, x0) and an open interval in the form (x0, b) such that f ′(x) exists for all x ∈ (a, x0) ∪ (x0, b).

• The condition “ f is convex on one side of x0 and concave on the other side” means that there is an open
interval in the form (α, x0) and an open interval in the form (x0, β) on which f is convex on one of them
and concave on the other, that is, there is a change of convexity at x0.

Suppose that x0 is an inflection number of a function f . By definition, on one side of the point
(
x0, f (x0)

)
,

the graph of f is bending up and on the other side, the graph is bending down. That is, there is a change of
bending at the point

(
x0, f (x0)

)
.

Terminology Suppose that x0 is an inflection number of a function f . Then the point
(
x0, f (x0)

)
is called an

inflection point of the graph of f .

In the following example, the function f is discussed in a previous example. Below we just copy part of the
table obtained in the solution there.

Example Consider the function f : R −→ R given by

f (x) = x4 − 4x3 + 5.

From the table
(−∞, 0) (0, 2) (2,∞)

f ′′ + − +

we see that the inflection numbers of f are 0 and 2.

Remark We can also say that the inflection points of the graph are (0, 5) and (2,−11).

The next result gives a necessary condition for inflection number.

Theorem 5.1.5 Let f be a function and let x0 be a real number such that f is differentiable on an open interval
containing x0 and that f ′′(x0) exists. Suppose that x0 is an inflection number of f . Then we have f ′′(x0) = 0.

Proof By symmetry, we may assume that f is convex on the left-side of x0 and concave on the right-side of x0,
that is, there exist real numbers a and b with a < x0 < b such that f ′ is increasing on (a, x0) and decreasing on
(x0, b), which by continuity of f ′ at x0, implies that

f ′(x) < f ′(x0) for all x ∈ (a, x0) ∪ (x0, b).
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Thus, the function f ′ has a local maximum at x0. Hence by Theorem 5.1.3 (and using the assumption that the
derivative of f ′ at x0 exists), the derivative of f ′ at x0 is 0, that is, f ′′(x0) = 0. �

Remark The converse of Theorem 5.1.5 is not true: if f ′′(x0) = 0, x0 may not be an inflection number of f .

Example Let f : R −→ R be the function given by

f (x) = x4.

Then we have f ′(x) = 4x3

f ′′(x) = 12x2 (−∞, 0) (0,∞)

f ′′ + +

Although f ′′(0) = 0, the number 0 is not an inflection number of f . This is
because f is convex on (−∞, 0) as well as on (0,∞).

Remark The function f is convex on (−∞,∞). Figure 5.11

Terminology

• If f ′(x0) = 0, we say that x0 is a stationary number of f . However, if f ′′(x0) = 0, we do not have a
specific name for x0.

• For local extremizers, there are two types: local maximizers and local minimizers. Correspondingly,
there are also two types of inflection numbers. However, we do not have specific names to distinguish
the two types.

Example Let f : R −→ R be the function given by

f (x) = x4 − 6x2 + 5x − 6.

Find the inflection point(s) of the graph of f .

Explanation To find the inflection points of the graph, first we find the inflection numbers of the function. For
that, we solve the equation f ′′(x) = 0. By Theorem 5.1.5, solutions to this equation include all the possible can-
didates for inflection numbers. However, for each of these candidates, we have to check whether the convexity
of f are different on the left-side and right-side of it.

Solution Differentiating f (x), we get f ′(x) =
d
dx

(x4 − 6x2 + 5x − 6)

= 4x3 − 12x + 5.

Differentiating f ′(x), we get f ′′(x) =
d
dx

(4x3 − 12x + 5)

= 12x2 − 12

= 12(x + 1)(x − 1).

Solving f ′′(x) = 0, we get two solutions: x1 = 1 and x2 = −1.
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(−∞,−1) (−1, 1) (1,∞)

12 + + +

x + 1 − + +

x − 1 − − +

f ′′ + − +

From the table, we see that f is convex on (−∞,−1), concave on (−1, 1) and convex on (1,∞). Hence x1 = 1
and x2 = −1 are the inflection numbers of f .

The inflection points of the graph are
(
1, f (1)

)
= (1,−6) and

(−1, f (−1)
)

= (−1,−16). �

To determine the nature of critical numbers, we can use the First Derivative Test discussed in the last
subsection. Below, we discuss an alternative way using second derivatives.

Second Derivative Test Let f be a function and let x0 be a real number such that f is differentiable on an open
interval containing x0. Suppose that x0 is a critical number of f , that is, f ′(x0) = 0.

(1) If f ′′(x0) < 0, then x0 is a local maximizer of f (in fact, we have f (x0) > f (x) for all x sufficiently close
to and different from x0).

(2) If f ′′(x0) > 0, then x0 is a local minimizer of f (in fact, we have f (x0) < f (x) for all x sufficiently close
to and different from x0).

Explanation Below we give a proof for (1). To prove (2), we can use the method for (1). Alternatively, we can
apply (1) to the function − f because (− f )′′(x0) < 0 in this case.

Proof It suffices to prove (1). Suppose that f ′′(x0) < 0. We want to show that f is increasing on the left-side
of x0 and decreasing on the right-side.

By definition, together with the condition f ′(x0) = 0, we have

0 > f ′′(x0) = lim
h→0

f ′(x0 + h)
h

,

which implies that f ′(x0 + h) > 0 if h is sufficiently close to and less than 0, that is,

f ′(x) > 0 if x = x0 + h is sufficiently close to and less than x0.

Hence, by Theorem 5.1.1, f is increasing on the left-side of x0. Similarly, f is decreasing on the right-side of
x0. Therefore, by the continuity of f at x0, we see that f (x0) > f (x) for all x sufficiently close to and different
from x0. �

Remark

• To determine the nature of a critical number using the Second Derivative Test, we consider the sign of
f ′′ at the critical number. If we apply the First Derivative Test, we consider the sign of f ′ on the left-side
and the right-side of the critical number.

• If f ′′(x0) = 0, we can’t apply the Second Derivative Test. At x0, the function f may have a local
maximum, a local minimum or neither. See the last example in this subsection.
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• Some students have the following conjecture:

Suppose f ′(x0) = 0 and x0 is not a local extremizer of f , then x0 is an inflection number of f .

For “nice” functions (for example, polynomial functions), the conjecture is correct. However, we can
construct weird functions with “weird” critical point (see Figure 5.7).

However, when we consider nature of a critical number, there is no need to discuss whether it is an
inflection number because critical numbers are related to first derivatives whereas inflection numbers are
related to second derivatives.

Below, we redo a previous example using the Second Derivative Test.

Example Let f : R −→ R be the function given by

f (x) = 27x − x3.

Find and determine the nature of the critical number(s) of f .

Solution Differentiating f (x), we get f ′(x) =
d
dx

(27x − x3)

= 27 − 3x2

= 3(3 + x)(3 − x).

Solving f ′(x) = 0, we get the critical numbers of f : x1 = −3 and x2 = 3.

Differentiating f ′(x), we get f ′′(x) =
d
dx

(27 − 3x2)

= −6x

• At x1 = −3, we have f ′′(−3) = 18 > 0; therefore, x1 is a local minimizer of f .

• At x2 = 3, we have f ′′(3) = −18 < 0; therefore, x2 is a local maximizer of f .
�

Example Let f , g and h be functions from R to R given by

f (x) = x4, g(x) = −x4, h(x) = x3.

It is clear that x1 = 0 is a critical number of f , g and h. Moreover, we have f ′′(0) = g′′(0) = h′′(0). However,

• at x1 = 0, f has a local minimum;

• at x1 = 0, g has a local maximum;

• at x1 = 0, h does not have a local extremum.

y = x4 y = −x4 y = x3

Figure 5.12(a) Figure 5.12(b) Figure 5.12(c)
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5.1.4 Curve Sketching

Given a function f that is twice differentiable on an open interval (a, b), to sketch the graph of y = f (x) for
a < x < b, we can use the first derivative of f to find where the graph goes up or down and use the second
derivative of f to find where the graph bends up or down. Hence we can locate the local extremum points and
inflection points of the graph. Intercepts give additional information for the graph. If f is a rational function,
limits at infinity (±∞) and vertical asymptotes (infinite limits) are also useful.

The following table gives the shape of the graph of f corresponding to the four cases determined by the
signs of f ′ and f ′′. For example, first row first column corresponds to that both f ′ and f ′′ are positive: the
figure indicates that the graph goes up and bends up.

f ′ > 0 f ′ < 0

f′
′ >

0
f′
′ <

0

Example Sketch the graph of y = 27x − x3 for x ∈ [−5.5, 5.5].

Explanation In the question, we are ask to draw the graph of f where f (x) = 27x − x3 for −5.5 ≤ x ≤ 5.5.
In the graph, we should locate the endpoints

(−5.5, f (−5.5)
)

and
(
5.5, f (5.5)

)
. In two previous examples, we

obtain the following:

(−∞,−3) (−3, 3) (3,∞)

f ′ − + −
(−∞, 0) (0,∞)

f ′′ + −

The three numbers −3, 3 (zeros of f ′) and 0 (zero of f ′′) divide R into four intervals: (−∞,−3), (−3, 0), (0, 3)
and (3,∞). On each of these intervals, we can use the above tables to consider the signs of f ′ and f ′′.

Solution
(−∞,−3) (−3, 0) (0, 3) (3,∞)

f ′ − + + −
f ′′ + + − −
f

On the graph, we have

• Local minimum point
(−3, f (−3)

)
= (−3,−54)

• Inflection point
(
0, f (0)

)
= (0, 0)
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• Local maximum point
(
3, f (3)

)
= (3, 54)

• Intercepts (0, 0), (3
√

3, 0) and (−3
√

3, 0)

• Endpoints
(−5.5, f (−5.5)

)
= (−5.5, 17.875)

and
(
5.5, f (5.5)

)
= (5.5,−17.875)

The required graph is shown in the following figure:

-4 -2 2 4

-40

-20

20

40

�

Remark Since f is an odd function, the graph is symmetric about the origin.

Example Sketch the graph of y = x4 − 4x3 + 5 for −1.5 ≤ x ≤ 4.2.

Explanation In two previous examples, we obtain the following:

(−∞, 0) (0, 3) (3,∞)

f ′ − − +

(−∞, 0) (0, 2) (2,∞)

f ′′ + − +

Solution
(−∞, 0) (0, 2) (2, 3) (3,∞)

f ′ − − − +

f ′′ + − + +

f

On the graph, we have

• Inflection points
(
0, f (0)

)
= (0, 5) and

(
2, f (2)

)
= (2,−11)

• Local minimum point
(
3, f (3)

)
= (3,−22)

• Endpoints
( − 1.5, f (−1.5)

) ≈ (−1.5, 23.6)

and
(
4.2, f (4.2)

) ≈ (4.2, 19.8)

The required graph is shown in the following figure:

-1 1 2 3 4

-20

-10

10

20

�
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Remark There are two x-intercepts. Approximate values of their x-coordinates are 1.2 and 3.9 which can be
estimated using the Intermediate Value Theorem.

Example Sketch the graph of y = x3 + 3x2 − 45x for −9 ≤ x ≤ 6.

Solution Differentiating f (x), we get f ′(x) = 3x2 + 6x − 45

= 3(x − 3)(x + 5)
(−∞,−5) (−5, 3) (3,∞)

3 + + +

x − 3 − − +

x + 5 − + +

f ′ + − +

Differentiating f ′(x), we get f ′′(x) = 6x + 6
(−∞,−1) (−1,∞)

f ′′ − +

Combining the two tables, we get
(−∞,−5) (−5,−1) (−1, 3) (3,∞)

f ′ + − − +

f ′′ − − + +

f

On the graph, we have

• Local maximum point
( − 5, f (−5)

)
= (−5, 175)

• Inflection point
( − 1, f (−1)

)
= (−1, 47)

• Local minimum point
(
3, f (3)

)
= (3,−81)

• Intercepts (0, 0),
(−3 + 3

√
21

2
, 0

)
and

(−3 − 3
√

21
2

, 0
)

• Endpoints
( − 9, f (−9)

)
= (−9,−81) and

(
6, f (6)

)
= (6, 54)

The required graph is shown in the following figure:

-8 -6 -4 -2 2 4 6
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Exercise 5.1

1. For each of the following functions f , find the interval(s) on which it is increasing.

(a) f (x) = 2x2 − 5x + 6 (b) f (x) = 1 + 3x − x3

(c) f (x) = x3 + 6x2 − 63x (d) f (x) = 2x3 + 9x2 − 6x + 7

(e) f (x) = 3x4 + 4x3 − 24x2 − 48x (f) f (x) = x +
4
x

2. For each of the following functions f , find and determine the nature of its critical number(s).

(a) f (x) = −x2 + 7x − 13 (b) f (x) = x4 − 2x3

(c) f (x) = x5 − 15x3 (d) f (x) =
x2 + x + 1

x + 1

3. For each of the following functions f , find the interval(s) on which it is convex.

(a) f (x) =
√

x (b) f (x) = x3 − 6x2 + 9x

(c) f (x) = 3x5 − 9x4 + 8x3 (d) f (x) = x +
2
x

4. For each of the following functions f , find its inflection number(s).

(a) f (x) = 2x3 + 9x2 − 108x + 35 (b) f (x) = 1 − 1
x

+
1
x2

5. For each of the following equations, sketch its graph (you have to choose a suitable interval).

(a) y = x3 − 6x2 (b) y = 8x3 − 2x4

(c) y = (x2 − 3)2 (d) y = x3 + x + 1

5.2 Applied Extremum Problems

In this section, we will consider application of differentiation to applied extremum problems. In such problems,
we are interested in absolute (or global) extrema rather than relative extrema.

5.2.1 Absolute Extrema

Definition Let f be a function and let x0 be a real number belonging to the domain of f .

• If f (x0) ≥ f (x) for all x ∈ dom ( f ), then we say that f attains its (absolute or global) maximum at x0 and
that the number f (x0) is the (absolute or global) maximum (value) of f .

• If f (x0) ≤ f (x) for all x ∈ dom ( f ), then we say that f attains its (absolute or global) minimum at x0 and
that the number f (x0) is the (absolute or global) minimum (value) of f .

Remark Maximum and minimum values are unique (if exist).

Example Let f : R −→ R be the function given by f (x) = x2 + 1. Then

• f attains its (absolute) minimum at 0 and the minimum of f is 1;

• f does not attain its (absolute) maximum, that is, there does not exist any x0 ∈ R such that f (x0) ≥ f (x)
for all x ∈ R.

Terminology Maximum and minimum (values) of a function f are called (absolute or global) extrema of f .
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Recall (Extreme Value Theorem ) Let f : [a, b] −→ R be a continuous function. Then f attains its (absolute)
maximum and minimum. That is, there exist x1, x2 ∈ [a, b] such that

f (x1) ≤ f (x) ≤ f (x2) for all x ∈ [a, b].

Note Extrema may occur at the endpoints a, b or at points in (a, b).

Figure 5.13 shows the graph of a function f with domain
[a, b]. Note that f attains its absolute minimum at x2 which
belongs to the open interval (a, b) and attains its absolute max-
imum at b which is an endpoint. Also note that f has a relative
maximum at x1 but it does not attains its absolute maximum
there.

a x1 x2 b

y = f (x)

Figure 5.13

Let f : [a, b] −→ R be a function that is differentiable on (a, b). Suppose that f attains its maximum or
minimum at x0 where a < x0 < b. Then by Theorem 5.1.3, x0 must be a critical number of f , that is, f ′(x0) = 0.
Thus we have the following procedures to find the absolute extrema of f .

Steps to find absolute extrema

(1) Find the critical number(s) of f in (a, b).

(2) Find the values of f at the endpoints a and b and that at the critical number(s) found in (1).

(3) The maximum and minimum values of f are, respectively, the greatest and smallest of the values found
in Step 2.

FAQ Do we need to check the nature (relative maximum or minimum) of the critical numbers?

Answer If you want to find absolute extrema, there is no need to check the nature of the critical numbers. Even
if you know that f has a local maximum (say) at a certain critical number x0, you still have to compare values.
However if you know that f is increasing on [a, x0] and decreasing on [x0, b], then you can tell that f attains
its absolute maximum at x0, that is, f (x0) is the absolute maximum; and to get the absolute minimum, you can
compare the values f (a) and f (b). �

Example Find the absolute extremum values of the function f given by

f (x) = 2x3 − 18x2 + 30x

on the closed interval [0, 3].

Explanation In this question, the domain of f is taken to be [0, 3]. Since f is continuous on [0, 3], it follows
from the Extreme Value Theorem that f attains its absolute extrema. Note that f is differentiable on (0, 3).
Thus we can apply the above steps to find the absolute extremum values.

Solution Differentiating f (x), we get f ′(x) =
d
dx

(2x3 − 18x2 + 30x)

= 6x2 − 36x + 30 (0 < x < 3)
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Solving f ′(x) = 0, that is, 6x2 − 36x + 30 = 0 (0 < x < 3)
6(x − 1)(x − 5) = 0 (0 < x < 3)

we get the critical number of f in (0, 3): x1 = 1.

Comparing the values of f at the critical number and that at the endpoints:

x 0 1 3

f (x) 0 14 −18

we see that the maximum value of f is 14 and the minimum value of f is −18. �

1 2 3

-10

10
y = 2x3 − 18x2 + 30x

Figure 5.14

5.2.2 Applied Maxima and Minima

Example An article in a sociology journal stated that if a particular health-care program for the elderly were
initiated, then t years after its start, n thousand elderly people would receive direct benefits, where

n(t) =
t3

3
− 6t2 + 32t, 0 ≤ t ≤ 10.

After how many years does the number of people receiving benefits attain maximum?

Solution Differentiating n(t), we get n′(t) =
d
dt

( t3

3
− 6t2 + 32t

)

= t2 − 12t + 32 (0 < t < 10)

Solving n′(t) = 0, that is, t2 − 12t + 32 = 0 (0 < t < 10)
(t − 8)(t − 4) = 0 (0 < t < 10),

we get the critical numbers of n in (0, 10): t1 = 4 and t2 = 8.

Comparing the values of n at the critical numbers and that at the endpoints:

x 0 4 8 10

n(x) 0 160
3

128
3

160
3

we see that n attains its maximum at t1 = 4 and also at t2 = 10.

The number of people receiving benefits attains maximum after 4 years as well as after 10 years. �

Remark Although the maximum (if exist) of a function is unique, the above example shows that the values of
x at which a function attains its maximum may not be unique. The following figure show the graph of the
function n. Note that there are two highest points.
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2 4 6 8 10

20

40

60

n =
t3

3
− 6t2 + 32t

Figure 5.15

Example Find the dimensions of the rectangle that has maximum area if its perimeter is 20 cm.

Explanation The question asks for the length and width of the rectangle.
In the solution below, the domain of the area function A
is not a closed interval. We can’t use the steps as in the
last example. Instead, we consider where A is increasing
or decreasing.

Solution Let the length of one side of the rectangle be x cm.
Then the length of an adjacent side is (10 − x) cm.
Note that 0 < x and 0 < 10 − x. Thus we have 0 < x < 10.

10 − x

x

Figure 5.16The area A (in cm2) of the rectangle is

A(x) = x (10 − x), 0 < x < 10.

We want to find the value of x at which A attains its maximum.

Differentiating A(x), we get A′(x) =
d
dx

(10x − x2)

= 10 − 2x (0 < x < 10).

Solving A′(x) = 0, we obtain the critical number of A: x1 = 5. (0, 5) (5, 10)

A′ + −
A ↗ ↘Since A is increasing on (0, 5) and decreasing on (5, 10), it follows that A

attains its absolute maximum at x1 = 5.

The dimensions of the largest rectangle is 5 cm × 5 cm. �

Remark The largest rectangle is, in fact, a square.

FAQ Can we include 0 and 10 in the domain of A?

Answer We may allow 0 and 10 in the domain of A. If x = 0 or 10, we get a rectangle one side of which is
0 cm. Such a figure is called a degenerate rectangle. Including the endpoints, the domain becomes a closed
and bounded interval. Below we redo this problem using the method for the last example.

Alternative solution Let the length of one side of the rectangle be x cm. Then the length of an adjacent side is
(10 − x) cm. The area A (in cm2) of the rectangle is

A(x) = x (10 − x), 0 ≤ x ≤ 10.
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Differentiating A(x), we get A′(x) = 10 − 2x (0 < x < 10).

Solving A′(x) = 0, we obtain the critical number of A: x1 = 5. Comparing the values of A at the critical number
and that at the endpoints:

x 0 5 10

A(x) 0 25 0

we see that A attains its maximum at x1 = 5. Hence the dimensions of the largest rectangle is 5 cm × 5 cm. �

FAQ Can we apply the Second Derivative Test to check that A has maximum at x1 = 5?

Answer If you use the Second Derivative Test, you can only tell that A has local maximum at x1 = 5. In this
problem, we want global maximum.

However, there is a special version of the Second Derivative Test which can be applied to this problem. �

Second Derivative Test (Special Version) Let f be a function and let x0 be a real number such that f is
differentiable on an open interval (a, b) containing x0. Suppose that x0 is the only critical number of f in (a, b).

(1) If f ′′(x0) < 0, then in (a, b), f attains its maximum at x0, that is, f (x0) ≥ f (x) for all x ∈ (a, b).

(2) If f ′′(x0) > 0, then in (a, b), f attains its minimum at x0, that is, f (x0) ≤ f (x) for all x ∈ (a, b).

Explanation Below we give a proof for (1). For this, we use a method called Proof by Contradiction. The result
we want to prove is in the form “Assumption; Conclusion”.

• The assumption is “ f is differentiable on an open interval (a, b) containing x0 and x0 is the only critical
number of f in (a, b)”.

• The conclusion is “If f ′′(x0) < 0, then in (a, b), f attains its maximum at x0”.

The negation (opposite) of the conclusion is “It is not true that if f ′′(x0) < 0, then in (a, b), f attains its
maximum at x0” which can be restated as “ f ′′(x0) < 0 and in (a, b), f does not attain its maximum at x0”.

The method of Proof by Contradiction is to assume that the conclusion is false and use it (together with the
given assumption) to deduce something that contradicts the given assumption. More specifically, we want to
deduce that there exists x2 ∈ (a, b) with x2 , x0 such that f ′(x2) = 0, which contradicts the assumption that x0

is the only critical number of f in (a, b).

In the proof below, we write “Without loss of generality, we may assume that x1 > x0”. It means that the
other case where x1 < x0 can be treated similarly.

Proof We give a proof for (1). For (2), it can be proved similarly or alternatively proved by applying (1) to the
function − f .

Suppose that (1) does not hold, that is, suppose that f ′′(x0) < 0 but there exists x1 ∈ (a, b) such that

f (x1) > f (x0).

Without loss of generality, we may assume that x1 > x0. Applying the Extreme Value Theorem to f on the
interval [x0, x1], we see that there exists x2 ∈ [x0, x1] such that

f (x2) ≤ f (x) for all x ∈ [x0, x1].



5.2. Applied Extremum Problems 151

It is clear that x2 , x1. Moreover, we have x2 , x0; this is because

f (x0) > f (x) if x is sufficiently close to x0 and x , x0

by the Second Derivative Test (since f ′′(x0) < 0). Thus we have

x2 ∈ (x0, x1) and f (x2) ≤ f (x) for all x ∈ (x0, x1),

which implies that f has a local minimum at x2. By Theorem 5.1.3,
we have f ′(x2) = 0, which (together with that x2 , x0) contradicts
the assumption that x0 is the only critical number of f in (a, b). �

can’t happen

a x0 x2 x1 b
Figure 5.17

Alternative solution to the rectangle problem Let the length of one side of the rectangle be x cm. Then the
length of an adjacent side is (10 − x) cm. The area A (in cm2) of the rectangle is

A(x) = x(10 − x), 0 < x < 10.

Differentiating A(x), we get A′(x) = 10 − 2x (0 < x < 10).

Solving A′(x) = 0, we obtain the critical number of A: x1 = 5.

Differentiating A′(x), we get A′′(x) =
d
dx

(10 − 2x) = −2.

Since A′′(5) = −2 < 0 and 5 is the only critical number of A in (0, 10), it follows from the Second Derivative
Test (Special Version) that A attains its maximum at x1 = 5. Hence the dimensions of the largest rectangle is
5 cm × 5 cm. �

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal
squares from each corner and then folding up the sides. Find the length of the side of the square that must be
cut off if the volume of the box is to be maximized. What is the maximum volume?

Solution 1 Let the length of the side of the square to be cut off be x cm. Then the base of the box is a square
with each side equals to (18 − 2x) cm. Hence we have 0 < x < 9.

18

18 − 2x

x

18 − 2x

x

Figure 5.18 Figure 5.18(b)

The volume V , in cm3, of the open box is

V(x) = x (18 − 2x)2, 0 < x < 9.

Differentiating V(x), we get V ′(x) =
d
dx

(324x − 72x2 + 4x3)

= 324 − 144x + 12x2 (0 < x < 9)
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Solving V ′(x) = 0, that is 324 − 144x + 12x2 = 0 (0 < x < 9)

12(x − 9)(x − 3) = 0 (0 < x < 9)

we get the critical number of V in (0, 9): x1 = 3. (0, 3) (3, 9)

V ′ + −
V ↗ ↘Since V is increasing on (0, 3) and decreasing on (3, 9), it follows

that on (0, 9), V attains its maximum at x1 = 3.

To maximize the volume of the box, the length of the side of the square that must be cut off is 3 cm.

The maximum volume is V(3) = 432 cm3. �

Solution 2 Let the length of the side of the square to be cut off be x cm. Then the base of the box is a square
with each side equals to (18 − 2x) cm. Hence we have 0 ≤ x ≤ 9 (when x = 0 or 9, we get a degenerate box
with zero volume).

The volume V , in cm3, of the open box is

V(x) = x (18 − 2x)2, 0 ≤ x ≤ 9.

Differentiating V(x), we get V ′(x) =
d
dx

(324x − 72x2 + 4x3)

= 324 − 144x + 12x2 (0 < x < 9)

Solving V ′(x) = 0, that is 324 − 144x + 12x2 = 0 (0 < x < 9)

12(x − 9)(x − 3) = 0 (0 < x < 9)

we get the critical number of V in (0, 9): x1 = 3.

Comparing the value of V at the critical number and that the the endpoints:

x 0 3 9

V(x) 0 432 0

we see that to have maximum volume, the length of the side of the square that must be cut off is 3 cm; and that
the maximum volume is 432 cm3. �

Solution 3 Let the length of the side of the square to be cut off be x cm. Then the base of the box is a square
with each side equals to (18 − 2x) cm. Hence we have 0 < x < 9.

The volume V , in cm3, of the open box is

V(x) = x (18 − 2x)2, 0 < x < 9.

Differentiating V(x), we get V ′(x) =
d
dx

(324x − 72x2 + 4x3)

= 324 − 144x + 12x2 (0 < x < 9)

Solving V ′(x) = 0, that is 324 − 144x + 12x2 = 0 (0 < x < 9)

12(x − 9)(x − 3) = 0 (0 < x < 9)

we get the critical number of V in (0, 9): x1 = 3.

Differentiating V ′(x), we get V ′′(x) =
d
dx

(324 − 144x + 12x2)

= −144 + 24x.



5.2. Applied Extremum Problems 153

Since V ′′(3) = −72 < 0 and x1 = 3 is the only critical number of V in (0, 9), it follows from the Second
Derivative Test (Special Version) that in (0, 9), V attains its maximum at x1 = 3. Thus the length of the side of
the square that must be cut off is 3 cm and the maximum volume is V(3) = 432 cm3. �

2 4 6 8

100

200

300

400

V = x(18 − 2x)2

Figure 5.19

5.2.3 Applications to Economics

Suppose a manufacturer produces and sells a product. Denote C(q) to be the total cost for producing and
marketing q units of the product. Thus C is a function of q and it is called the (total) cost function. The rate of
change of C with respect to q is called the marginal cost, that is,

marginal cost =
dC
dq
.

Denote R(q) to be the total amount received for selling q units of the product. Thus R is a function of q and it
is called the revenue function. The rate of change of R with respect to q is called the marginal revenue, that is,

marginal revenue =
dR
dq
.

Denote P(q) to be the profit of producing and selling q units of the product, that is,

P(q) = R(q) −C(q).

Thus P is a function of q and it is called the profit function.

Denote qmax to be the largest number of units of the product that the manufacturer can produce. Assuming
that q can take any value between 0 and qmax. Then for each of the functions C, R and P, the domain is
[0, qmax]. Suppose that the cost function and the revenue function are differentiable on (0, qmax) and suppose
that producing 0 or qmax units of the product will not give maximum profit. Then in order to have maximum
profit, we need

dP
dq

= 0,

or equivalently,
dC
dq

=
dR
dq
,

that is, marginal cost = marginal revenue.

Example The demand equation for a certain product is

q − 90 + 2p = 0, 0 ≤ q ≤ 90,
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where q is the number of units and p is the price per unit, and the average cost function is

Cav = q2 − 8q + 57 +
2
q

0 < q ≤ 90.

At what value of q will there be maximum profit? What is the maximum profit?

Explanation Although the average cost function is undefined at q = 0, we may include 0 in the domain of the
cost function. The cost function and the revenue function are differentiable on (0, 90). However, we do not
know whether maximum profit would be attained in (0, 90) or at an endpoint. So we use the method for finding
absolute extrema for functions on closed and bounded intervals.

Solution The cost function C is given by

C(q) = q ·Cav = q3 − 8q2 + 57q + 2 (0 ≤ q ≤ 90),

and the revenue function R is given by

R(q) = p · q =
90 − q

2
· q (0 ≤ q ≤ 90).

Therefore the profit function P is given by

P(q) = R(q) −C(q)

=
(
45q − q2

2

)
− (q3 − 8q2 + 57q + 2)

= −q3 +
15
2

q2 − 12q − 2, (0 ≤ q ≤ 90).

Differentiating P(q), we get P′(q) =
d
dq

(
−q3 +

15
2

q2 − 12q − 2
)

= −3q2 + 15q − 12 (0 < q < 90)

Solving P′(q) = 0, that is, −3q2 + 15q − 12 = 0 (0 < q < 90)

−3(q − 1)(q − 4) = 0 (0 < q < 90),

we get the critical numbers of P: q1 = 1 and q2 = 4.

Comparing the values of P at the critical numbers as well as that at the endpoints:

q 0 1 4 90

P(q) −2 −15
2

6 −669332

we see that maximum profit is attained at q2 = 4 and the maximum profit is 6 (units of money). �

Remark If we know that maximum profit is not attained at the endpoints, we can simply compare the values of
P at q1 and q2.

1 2 3 4 5 6

-20

-10

5

P = −q3 + 15
2 q2 − 12q − 2

Figure 5.20
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Exercise 5.2

1. For each of the given function f , find its absolute extrema on the given interval.

(a) f (x) = 4x3 + 3x2 − 18x + 1, [0, 3]
(b) f (x) = −3x5 + 5x3 + 2, [−2, 0]
(c) f (x) = 1 + 2x3 − 3x4, [−1, 1]

2. Find two positive real numbers whose sum is 50 and whose product is a maximum.

3. Find two real numbers x and y satisfying 2x + y = 15 such that x2 + y2 is minimized.
Can you find a geometric meaning for the result?

4. Find the dimensions of the rectangle of area 100 square units that has the least perimeter.

5. A rectangular field is to be enclosed by a fence and divided equally into two parts by a fence parallel to
one pair of the sides. If a total of 600 m of fence is to be used, find the dimensions of the field if its area
is to be maximized.

6. A book is to contain 36 in2 of printed matter per page, with margins of 1 in along the sides and 11
2 in

along the top and bottom. Find the dimensions of the page that will require the minimum amount of
paper.

7. Suppose that a ball is thrown straight up into the air and its height after t seconds is 5 + 24t − 16t2 feet.
Determine how long it will take the ball to reach its maximum height and determine the maximum height.

8. It is known from experiments that the height (in meter) of a certain plant after t months is given (approx-
imately) by

h(t) =
√

t − t, 0 ≤ t ≤ 1.

How long, on the average, will it take a plant to reach its maximum height? What is the maximum height?

9. A company manufactures and sells x pieces of a certain product per month. The monthly cost (in dollars)
is

C(x) = 120000 + 100x

and the price-demand equation is
p = 300 − x

15
where 0 ≤ x ≤ 4000. Find the maximum profit, the production level that will give the maximum profit,
and the price the company should charge for each piece of the product.
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Chapter 6

Integration

6.1 Definite Integrals

In the introduction of Chapter 3, we consider the area of the region under the curve y = x2 and above the x-axis
for x between 0 and 1. To get approximations for the area, we divide [0, 1] into n equal subintervals:

[x0, x1], [x1, x2], . . . , [xn−1, xn],

where xi =
i
n

for 0 ≤ i ≤ n; and for each i = 1, . . . , n, in the subinterval [xi−1, xi], we take the left endpoint xi−1

and consider the sum
n∑

i=1
f (xi−1) · 1

n
, that is, f (x0) · 1

n
+ · · · + f (xn−1) · 1

n
. We have seen that the sum is close to

1
3

(which is the required area) if n is large. Using limit notation, the result can be written as

lim
n→∞

n∑

i=1

f (xi−1) · 1
n

=
1
3
. (6.1.1)

The above idea can be generalized to any continuous functions f on any closed and bounded interval. Moreover,
f need not be non-negative.

Theorem 6.1.1 Let f be a function that is continuous on a closed and bounded interval [a, b]. Then the follow-
ing limit exists:

lim
n→∞

n∑

i=1

f (xi−1) · b − a
n

,

where xi = a +
i
n

(b − a) for 0 ≤ i ≤ n.

Explanation

• By the construction of the xi’s, we have x0 = a, xn = b,
x0 < x1 < · · · < xn, and for every i = 1, . . . , n, the
subinterval [xi−1, xi] has length b − a

n
and xi−1 is the left-

endpoint of the subinterval.

• If f is non-negative on [a, b], that is, f (x) ≥ 0 for all

x ∈ [a, b], then lim
n→∞

n∑
i=1

f (xi−1) · b − a
n

is the area bounded

by the graph of f , the x-axis and the vertical lines given
by x = a and x = b.

y = f (x)

x0 x1 xn−1 xn· · ·
Figure 6.1
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Definition Let f be a function that is continuous on a closed and bounded interval [a, b]. The number

lim
n→∞

n∑
i=1

f (xi−1) · b − a
n

, where xi = a +
i
n

(b − a) for 0 ≤ i ≤ n, is called the definite integral of f from a to

b and is denoted by
∫ b

a f (x) dx, that is,

∫ b

a
f (x) dx = lim

n→∞

n∑

i=1

f (xi−1) · b − a
n

. (6.1.2)

Example The result given in (6.1.1) can be written as

∫ 1

0
x2 dx =

1
3
. (6.1.3)

Remark In Theorem 6.1.1, in each subinterval [xi−1, xi], instead of taking the left endpoint xi−1, we can take
the right endpoint xi (see Figure 6.2) and we have

lim
n→∞

n∑

i=1

f (xi) · b − a
n

=

∫ b

a
f (x) dx. (6.1.4)

y = f (x)

x0 x1 xn−1 xn· · ·
Figure 6.2

y = f (x)

x0 t1 x1 t2 tn xn· · ·
Figure 6.3

In fact, we can take an arbitrarily point (denoted by ti) in [xi−1, xi]: the sum
n∑

i=1
f (ti) · b − a

n
is close to

∫ b
a f (x) dx if n is large enough (see Figure 6.3).

More generally, the subintervals [x0, x1], . . . , [xn−1, xn] need not be of equal lengths. All we need is that the
lengths are small enough: if a = x0 < x1 < · · · < xn = b and ∆x1, . . . ,∆xn are small enough, where ∆xi is the
length of the ith subinterval [xi−1, xi], then for every choice of t1, . . . , tn with ti ∈ [xi−1, xi] for 1 ≤ i ≤ n, the
sum (called a Riemann Sum)

n∑

i=1

f (ti)∆xi

is close to
∫ b

a f (x) dx. Many authors use this to define definite integral.

Below, we apply (6.1.4) to deduce the result given in (6.1.3). For this, we take f (x) = x2, a = 0, b = 1 and
xi =

i
n

for 0 ≤ i ≤ n.
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Example By (6.1.4), we have

∫ 1

0
x2 dx = lim

n→∞

n∑

i=1

( i
n

)2
· 1

n

= lim
n→∞

1
n3

n∑

i=1

i2

= lim
n→∞

1
n3 ·

n(n + 1)(2n + 1)
6

Sum of Squares Formula

= lim
n→∞

2n3

6n3 Leading Term Rule

=
1
3

FAQ Can we define
∫ b

a f (x) dx if f is not continuous on [a, b]?

Answer In defining
∫ b

a f (x) dx, we need Theorem 6.1.1. The condition “ f is continuous on [a, b]” is used to

guarantee that lim
n→∞

n∑
i=1

f (xi−1) · 1
n

exists.

In general, if f is a function defined on [a, b] such that there exists a (unique) real number I satisfying

(∗)
n∑

i=1
f (ti)∆xi is arbitrarily close I if ∆x1, . . . ,∆xn are sufficiently small, where ∆xi = xi − xi−1 for 1 ≤ i ≤ n,

a = x0 < x1 < · · · < xn = b and ti ∈ [xi−1, xi] for 1 ≤ i ≤ n,

then the unique number I is defined to be
∫ b

a f (x) dx. �

Remark

• In view of (∗), we may write ∫ b

a
f (x) dx = lim

‖∆‖→0

n∑

i=1

f (ti)∆xi,

where ‖∆‖ → 0 means the lengths ∆xi’s tend to zero. However, this kind of limit is different from that
discussed in Chapter 3.

• The symbol
∫

was introduced by Leibniz and is called the integral sign. It is an elongated S and was
chosen because a definite integral is a limit of sums.

• Since the definite integral of a (continuous) function on [a, b] depends on the function f and the interval
[a, b] only, it can simply be denoted by

∫ b
a f , omitting the variable x and the notation dx. However, the

notation
∫ b

a f (x) dx is preferred. There are two reasons:

(1) the notation dx reminds us of the factors ∆xi in the sums
n∑

i=1
f (ti)∆xi;

(2) with the variable included in the notation, it is easier to handle the substitution method for integra-
tion (see Chapter 10).

• In the notation
∫ b

a f (x) dx, the variable x is called a dummy variable; it can be replaced by any other

symbol. For example, using t as the dummy variable, (6.1.3) can be written as
∫ 1

0 t2 dt =
1
3

. Note that if
we use t as the dummy variable, we have to change dx to dt accordingly.
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Example Use definition to find
∫ 2

1
x dx.

Solution Applying (6.1.2) to f (x) = x, a = 1, b = 2 and xi = 1 +
i
n

for 0 ≤ i ≤ n, we get

∫ 2

1
x dx = lim

n→∞

n∑

i=1

(
1 +

i − 1
n

)
· 1

n

= lim
n→∞

1
n2

n∑

i=1

(n + i − 1)

= lim
n→∞

1
n2 ·

n(n + 2n − 1)
2

Sum of A.P.

= lim
n→∞

3n − 1
2n

= lim
n→∞

3n
2n

Leading Term Rule

=
3
2
.

�

Remark The value of the definite integral is the area of the trapezoidal region
shown in Figure 6.4. Readers can check that the result agrees with that obtained
by using formula for area of trapezoid.

1 2

1

2

Figure 6.4

Definite Integral for Constant Functions Let c be a constant and let a and b be real numbers with a < b. Then

we have
∫ b

a
c dx = c · (b − a).

Proof Applying (6.1.2) to f (x) = c and xi = a +
i
n

(b − a) for 0 ≤ i ≤ n, we get

∫ b

a
c dx = lim

n→∞

n∑

i=1

c · b − a
n

= lim
n→∞ c · b − a

n
× n Sum of Constants

= lim
n→∞ c · (b − a) Rule (L1) for Limit

= c · (b − a)
�

Remark If c > 0, then
∫ b

a c dx is the area of the rectangular region shown in
Figure 6.5.

a b

c

Figure 6.5

Rules for Definite Integrals Let f and g be functions that are continuous on a closed and bounded interval
[a, b]. Let α be a constant and let c ∈ (a, b). Then we have
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(Int1)
∫ b

a

[
f (x) + g(x)

]
dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx

Proof Apply definition and Rule (L4) for limits of sequences. �

(Int2)
∫ b

a
α f (x) dx = α

∫ b

a
f (x) dx

Proof Apply definition and Rule (L5s) for limits of sequences. �

Remark Using Rules (Int1) and (Int2), we get

∫ b

a

[
f (x) − g(x)

]
dx =

∫ b

a
f (x) dx −

∫ b

a
g(x) dx.

In fact, Rule (Int1) is valid for sum and difference of finitely many (continuous) functions.

(Int3)
∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx.

Explanation The proof for the result is not easy. For the case where
f is nonnegative on [a, b], the result can be seen from the geometric
interpretation shown in Figure 6.6. �

y = f (x)

a c b

Figure 6.6

Example
∫ 1

0
5x2 dx = 5

∫ 1

0
x2 dx Rule (Int2)

= 5 × 1
3

by (6.1.3)

=
5
3

Example
∫ 2

1
(3 − x) dx =

∫ 2

1
3 dx −

∫ 2

1
x dx Rule (Int1)

= 3 × (2 − 1) − 3
2

Definite Integral for Constant &
Example on Page 160

=
3
2

In defining
∫ b

a f (x) dx, we need a < b. For convenience, we introduce the following:

Convention Let f be a function that is continuous on a closed and bounded interval [a, b] and let c ∈ [a, b].
Then we define

(1)
∫ a

b
f (x) dx = −

∫ b

a
f (x) dx

(2)
∫ c

c
f (x) dx = 0



162 Chapter 6. Integration

Example
∫ 2

2
(1 + 2x − 3x2) dx = 0 since the function 1 + 2x − 3x2 is continuous on [0, 3] (for example)

and 2 ∈ [0, 3].

Example
∫ 0

1
x2 dx = −

∫ 1

0
x2 dx by convention

= −1
3

by (6.1.3)

Terminology In a definite integral
∫ b

a f (x) dx,

• the function f is called the integrand;

• the numbers a and b are called the limits of integration; a is the lower limit and b the upper limit.

Exercise 6.1

1. For each of the following definite integrals, use the results in this section to find its value:

(a)
∫ 1

0 (1 − 3x2) dx (b)
∫ 1

2 4x dx

2. Use definition to find the definite integral
∫ 1

0 x3 dx.

Given: 13 + 23 + · · · + n3 =
n2(n + 1)2

4

6.2 Fundamental Theorem of Calculus

In the last section, we give the definition and some examples of definite integral. Although we have some
rules that are useful in calculating definite integrals, we still have to know the definite integrals of some “basic
functions”. For example, using rules, we can find the definite integrals of polynomials provided that we know∫ b

a xn dx for positive integers n. Finding definite integrals by first principle (that is, by definition) is very
tedious. In this section, we describe a simple way (Fundamental Theorem of Calculus, Version 2) to find
definite integrals. It is quite surprising that differentiation and integration are related— they are reverse process
of each other (see Fundamental Theorem of Calculus, Versions 1 and 3).

Given a function f that is continuous on a closed and bounded interval [a, b], in order to “find” the definite
integral

∫ b
a f (x) dx, we introduce an auxiliary function F from [a, b] into R defined by

F(x) =

∫ x

a
f (t) dt a ≤ x ≤ b.

In the construction of F, for each x ∈ (a, b], the value F(x) is defined
to be the definite integral of f over the interval [a, x] and for x = a, by
convention, F(a) =

∫ a
a f (t) dt is defined to be 0. Note that x is used as the

independent variable for the function F. For clarity, we use another symbol
t as the dummy variable for the definite integral of f over [a, x].

Geometrically, if f is nonnegative on [a, b], then F can be considered as an
“area function” with F(x) equal to the area under the graph of f (and above
the horizontal axis) from a to x.

a x b

Figure 6.7
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By the construction of F, the required definite integral is F(b). If we can find a formula for F(x), then we
can solve the problem. The following result gives a relation between F and f .

Fundamental Theorem of Calculus, Version 1 Let f be a function that is continuous on a closed and bounded
interval [a, b]. Let F be the function from [a, b] into R defined by

F(x) =

∫ x

a
f (t) dt for a ≤ t ≤ b.

Then F is continuous on [a, b] and differentiable on (a, b) with F′(x) = f (x) for all x ∈ (a, b).

Explanation The proof of this result will be given in the appendix. Below we explain how to “obtain” F′ = f
on (a, b) intuitively for the case where f is nonnegative on [a, b]. Recall that

F′(x) = lim
h→0

F(x + h) − F(x)
h

.

For x ∈ (a, b) and for sufficiently small h > 0 (such that a + h ≤ b), we have

F(x + h) − F(x) =

∫ x+h

a
f (t) dt −

∫ x

a
f (t) dt by construction of F

=

(∫ x

a
f (t) dt +

∫ x+h

x
f (t) dt

)
−

∫ x

a
f (t) dt Rule (Int3)

=

∫ x+h

x
f (t) dt.

a x x + h b

Figure 6.8

Note that
∫ x+h

x f (t) dt is the area of the region below the graph
of f (and above the horizontal axis) from x to x + h. If h is
small, then [x, x+h] is a short interval and the area of the small
region under consideration can be approximated by the area of
the rectangular region with base [x, x+h] on the horizontal axis
and height equal to f (x). Thus we have

∫ x+h

x
f (t) dt is close to f (x) · h if h is small,

from which we obtain

F(x + h) − F(x)
h

=

∫ x+h
x f (t) dt

h
is close to f (x) if h is small.

Taking limit, we get F′(x) = f (x).

Remark To be more precise, the above argument gives lim
h→0+

F(x + h) − F(x)
h

= f (x) only.

In view of the Fundamental Theorem of Calculus (Version 1), to find
∫ b

a f (x) dx, we should look for func-
tions G such that G′ = f .

Definition Let f be a function that is continuous on a closed and bounded interval [a, b]. Suppose that G is a
function that is defined on [a, b] such that the following two conditions are satisfied:
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(1) G is continuous on [a, b];

(2) G is differentiable on (a, b) and G′(x) = f (x) for all x ∈ (a, b).

Then we say that G is a primitive for f on [a, b].

Example Let f (x) = 3x2 and let G(x) = x3. Note that f and G are continuous on R and that G′(x) = f (x) for
all x ∈ R. Thus G is a primitive for f on every closed and bounded interval [a, b].

Remark Primitive is not unique. For example, the function G1(x) = x3 + 1 is also a primitive for f (on every
closed and bounded interval). In fact, for every constant C, the function

x3 + C (6.2.1)

is a primitive for f (on every closed and bounded interval). It is natural to ask whether there are any more
primitives:

• If F′(x) = f (x) for all x ∈ R, must F be in the form (6.2.1)?

Corollary 6.2.2, which is based on the following theorem, tells that the answer is affirmative.

Theorem 6.2.1 Let F and G be functions that are defined on a closed and bounded interval [a, b]. Suppose that
F and G are continuous on [a, b] and are differentiable on (a, b) with F′(x) = G′(x) for all x ∈ (a, b). Then on
[a, b], the functions F and G differ by a constant, that is, there exists a constant C such that

F(x) −G(x) = C for all x ∈ [a, b].

Explanation The following is the geometry meaning of the result:

• The condition “F′(x) = G′(x) for all x ∈ (a, b)” means that at corresponding points (same x-coordinates),
tangents to the graphs of F and G are parallel.

• The conclusion is that the graph of F can be obtained from that of G by moving it upward (C > 0) or
downward (C < 0).

Proof Let f be the function from [a, b] into R defined by

f (x) = F(x) −G(x).

Note that f ′(x) = F′(x) −G′(x) = 0 for all x ∈ (a, b). Hence by Theorem 5.1.1, there exists a constant C such
that

f (x) = C for all x ∈ (a, b).

Since f is continuous on [a, b], it follows that

f (x) = C for all x ∈ [a, b]

from which we get the required result. �

Corollary 6.2.2 Let f be a function that is continuous on a closed and bounded interval [a, b]. Suppose that F
and G are primitives for f on [a, b]. Then on [a, b], the functions F and G differ by a constant.
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Proof This is an immediate consequence of Theorem 6.2.1 since by the definition of primitive, the functions
F and G are continuous on [a, b] and differentiable on (a, b) and F′(x) = f (x) = G′(x) for all x ∈ (a, b). �

Example Find the value of the definite integral
∫ 2

1
3x2 dx.

Solution Let f (x) = 3x2 and let G(x) = x3. Then G is a primitive for f on [1, 2].

By the Fundamental Theorem of Calculus (Version 1), the function F given by

F(x) =

∫ x

1
3t2, dt, 1 ≤ x ≤ 2.

is a primitive for f on [1, 2].

By Corollary 6.2.2, on the interval [1, 2], the functions F and G differ by a constant, that is, there exists a
constant C such that

F(x) − x3 = C for all x ∈ [1, 2].

Putting x = 1 and using the construction of F, we get

0 − 1 = C.

which implies that F(x) = x3 − 1 for all x ∈ [1, 2]. Hence, we have
∫ 2

1
3x2 dx = F(2) by construction of F

= 23 − 1

= 7.
�

Remark The above procedure can be used to find the definite integral of f on any closed and bounded interval
[a, b]. This is because G is a primitive for f on every [a, b].

From the above example, we see that given a function f that is continuous on a closed and bounded interval
[a, b], if we can find a primitive for f over [a, b], then we can find the definite integral

∫ b
a f (x) dx. The following

result describe an alternative procedure for finding
∫ b

a f (x) dx (there is no need to find the constant C).

Fundamental Theorem of Calculus, Version 2 Let f be a function that is continuous on a closed and bounded
interval [a, b]. Suppose that G is a primitive for f on [a, b]. Then we have

∫ b

a
f (x) dx = G(b) −G(a).

Proof Let F be the function from [a, b] into R defined by

F(x) =

∫ x

a
f (t) dt, a ≤ x ≤ b.

By the Fundamental Theorem of Calculus, Version 1, the function F is a primitive for f on [a, b]. Hence by
Corollary 6.2.2, there exists a constant C such that

F(x) −G(x) = C for all x ∈ [a, b]. (6.2.2)
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Therefore, we have
∫ b

a
f (x) dx = F(b) by construction of F

= F(b) − F(a) since F(a) = 0

=
(
G(b) + C

)
−

(
G(a) + C

)
by (6.2.2)

= G(b) −G(a)
�

Below we redo the last example using the second version of the Fundamental Theorem of Calculus.

Example Evaluate
∫ 2

1
3x2 dx

Solution Since the function G(x) = x3 is a primitive for the function 3x2 on the interval [1, 2], it follows from
the Fundamental Theorem of Calculus (Version 2) that

∫ 2

1
3x2 dx = G(2) −G(1)

= 23 − 13

= 7.
�

FAQ Can we use other primitives for f ?

Answer The Fundamental Theorem tells that any primitive will work. Try it yourselves. �

Notation We will use the notation G(b) −G(a) quite often. For simplicity, it will be denoted by

[
G(x)

]b

a
or G(x)

∣∣∣∣
b

a
.

Example Find
∫ 5

3
2x dx.

Explanation To find
∫ b

a f (x) dx, in applying the Fundamental Theorem of Calculus (Version 2), we have to find
a function G that is continuous on [a, b] such that G′ = f on (a, b). In this course, functions that we considered
are “nice”—there is no need to check continuity; we just need to check that G′ = f (usually valid on a much
larger interval).

Solution By inspection, we see that the function x2 is a primitive for the integrand 2x (on every closed and
bounded interval). Thus by the Fundamental Theorem of Calculus (Version 2), we have

∫ 5

3
2x dx =

[
x2

]5

3

= 52 − 32

= 16.
�

Remark The definite integral is the area of the trapezoidal region that lies below the line y = 2x, above the
x-axis and is bounded on the left and right by the vertical lines x = 3 and x = 5. Use formula to check the
answer yourselves.
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Exercise 6.2

1. For each of the following functions f , use inspection to find a primitive. Is your answer a primitive for f
on every closed and bounded interval [a, b]? If not, what can you tell about [a, b]?

(a) f (x) = x (b) f (x) = 1
(c) f (x) = x5 (d) f (x) = 2x + 1

(e) f (x) =
1

2
√

x
(f) f (x) =

√
x

2. Use inspection to find a primitive for f (x) = x4 and hence evaluate the following definite integrals.

(a)
∫ 1

0 x4 dx (b)
∫ 3

1 x4 dx

(c)
∫ 3

0 x4 dx (d)
∫ 3

0 7x4 dx

6.3 Indefinite Integrals

Suppose that f and F are functions that are continuous on a closed and bounded interval [a, b]. To show that F
is a primitive for f on [a, b] means to show that F′(x) = f (x) for all x ∈ (a, b). In view of this, we introduce a
concept similar to primitive.

Definition Let f be a function that is continuous on an open interval (a, b). Suppose F is a function defined on
(a, b) such that F′(x) = f (x) for all x ∈ (a, b). Then we say that F is an antiderivative for f on (a, b).

Example

(1) Let f (x) = x2 and let F(x) =
1
3

x3. Then we have

F′(x) = f (x) for all x ∈ R.

Thus F is an antiderivative for f on every open interval contained in R.

(2) Let g(x) =
1√
x

and let G(x) = 2
√

x. Then we have

G′(x) = g(x) for all x > 0.

Thus G is an antiderivative for g on every open interval contained in (0,∞).

Remark Suppose that F is an antiderivative for f on (a, b). Then F is a primitive for f on every closed and
bounded interval [c, d] contained in (a, b). If in addition, F and f are defined at a and b and are continuous on
[a, b], then F is a primitive for f on [a, b].

The following result is similar to that given in Corollary 6.2.2.

Theorem 6.3.1 Let f be a function that is continuous on an open interval (a, b). Suppose that F and G are
antiderivatives for f on (a, b). Then on (a, b), the functions F and G differ by a constant.

Proof Apply the proof (the first part) for Theorem 6.2.1 �
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Theorem 6.3.1 means that if we can find one antiderivative for a continuous function f on an open interval
(a, b), then we can find all. More precisely, if F is an antiderivative for f on (a, b), then all the antiderivatives
for f on (a, b) are in the form

F(x) + C, a < x < b (6.3.1)

where C is a constant.

Note that (6.3.1) represents a family of functions defined on (a, b)—there are infinitely many of them, with
each C corresponds to an antiderivative for f and vice versa. We call the family to be the indefinite integral of
f (with respect to x) and we denote it by ∫

f (x) dx.

That is, ∫
f (x) dx = F(x) + C, a < x < b,

where F is a function such that F′(x) = f (x) for all x ∈ (a, b) and C is an arbitrary constant, called constant of
integration.

Example Using the two results in the last example, we have the following:

(1)
∫

x2 dx =
1
3

x3 + C, −∞ < x < ∞, where C is an arbitrary constant.

(2)
∫

1√
x

dx = 2
√

x + C, x > 0, where C is an arbitrary constant.

Remark

• Sometimes, for simplicity, we write
∫

x2 dx =
1
3

x3 + C etc.

♦ The interval R is omitted because it can be determined easily.

♦ The symbol C is understood to be an arbitrary constant.

• Since we can use any symbol to denote the independent variable, we may also write
∫

t2 dt =
1
3

t3 +C etc.

• Instead of a family of functions, sometimes we write
∫

f (x) dx to represent a function only. See the
discussion in the Alternative Solution on page 177.

Terminology

• To integrate a function f means to find the indefinite integral of f (that is, to find
∫

f (x) dx if x is chosen
to be the independent variable).

• Same as that for definite integrals, in the notation
∫

f (x) dx, the function f is called the integrand.

Integration of Constant (Function) Let k be a constant. Then we have
∫

k dx = kx + C, −∞ < x < ∞.

Explanation As usual, C is understood to be an arbitrary constant.
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Proof The result follows from the Constant Multiple Rule for Differentiation and the Rule for Derivative of
the Identity Function:

d
dx

kx = k · d
dx

x

= k �

Example
∫

3 dx = 3x + C

Power Rule for Integration (positive integer version) Let n be a positive integer. Then we have
∫

xn dx =
xn+1

n + 1
+ C, −∞ < x < ∞.

Proof The result follows from the Constant Multiple Rule and Power Rule (positive integer version) for Dif-
ferentiation:

d
dx

xn+1

n + 1
=

1
n + 1

· d
dx

xn+1

=
1

n + 1
· (n + 1)xn+1−1

= xn
�

Example
∫

x3 dx =
x3+1

3 + 1
+ C =

1
4
· x4 + C

Remark In the formula for Integration of Constant, putting k = 1, we get
∫

1 dx = x + C, −∞ < x < ∞.

By considering the constant function 1 as the function x0, the above result can be written as
∫

x0 dx =
x0+1

0 + 1
+ C, −∞ < x < ∞.

Thus the Power Rule
∫

xn dx =
xn+1

n + 1
+ C is also valid for the case where n = 0.

Power Rule for Integration (negative integer version) Let n be a negative integer different from −1. Then
we have ∫

xn dx =
xn+1

n + 1
+ C, x , 0.

Explanation The result means that on the intervals (−∞, 0) and (0,∞), the function xn+1

n + 1
is an antiderivative for

the function xn.

Proof The result follows from the Constant Multiple Rule and Power Rule (negative integer version) for
Differentiation. �

Example
∫

1
x5 dx =

∫
x−5 dx =

x−5+1

−5 + 1
+ C =

−1
4x4 + C

FAQ What is
∫

1
x

dx ?
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Answer You can’t apply the Power Rule if n = −1. Note that x−1+1

−1 + 1
is meaningless. You will learn a formula

in Chapter 8. �

Power Rule for Integration (n + 1
2 version) Let n be an integer. Then we have

∫
xn+ 1

2 dx =
xn+ 3

2

n + 3
2

+ C, x > 0.

Proof The result follows from the Constant Multiple Rule and Power Rule (n + 1
2 version) for Differentiation.

�

Remark The above result can be written as
∫

xr dx =
xr+1

r + 1
+ C, x > 0,

where r = n +
1
2

and n is an integer. In fact, the formula is valid for all real numbers r , −1 (see Chapter 10).

Example
∫

1√
x

dx =

∫
x−

1
2 dx =

x−
1
2 +1

− 1
2 + 1

+ C = 2x
1
2 + C

Constant Multiple Rule for Integration Let k be a constant and let f be a function that is continuous on an
open interval (a, b). Then we have

∫
k f (x) dx = k

∫
f (x) dx, a < x < b.

Proof The result follows from the Constant Multiple Rule for Differentiation. �

Example Find
∫

2x7 dx.

Explanation The question is to find the family of functions that are antiderivatives for the integrand (on some
open intervals). The answer should be given in the form “a function of x +C”. Usually, for integration problems,
there is no need to mention the underlying open intervals. For the given problem, the function 2x7 is continuous
on R and so it has antiderivatives on R.

Solution
∫

2x7 dx = 2
∫

x7 dx Constant Multiple Rule

= 2
(

x7+1

7 + 1
+ C

)
Power Rule

=
1
4

x8 + 2C
�

Remark From the answer, we see that the function 1
4

x8 is an antiderivative for the function 2x7 (on R). There-
fore, we can also write ∫

2x7 dx =
1
4

x8 + C.

Although the answers 1
4

x8 + 2C and 1
4

x8 + C look different, they represent the same family of functions. In
general, to do integration, we can use rules and formulas to get an antiderivative for the integrand and then add
a constant of integration.
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Sum Rule for Integration (Term by Term Integration) Let f and g be functions that are continuous on an
open interval (a, b). Then we have

∫ [
f (x) + g(x)

]
dx =

∫
f (x) dx +

∫
g(x) dx, a < x < b.

Proof The result follows from the Sum Rule for Differentiation. �

Example Find
∫

(1 + x3) dx.

Explanation We use rules and formulas for integration to obtain an antiderivative for the integrand and then add
a constant of integration.

Solution
∫

(1 + x3) dx =

∫
1 dx +

∫
x3 dx Term by Term Integration

= x +
x4

4
+ C Power Rule

Remark Using the Sum Rule together with the Constant Multiple Rule, we obtain the following:
∫ [

f (x) − g(x)
]

dx =

∫
f (x) dx −

∫
g(x) dx.

More generally, Term by Term Integration can be applied to sum and difference of finitely many terms.

Example Perform the following integration:

(1)
∫ (

x − 11 +
3√
x

)
dx

(2)
∫

(2x − 3)(x2 + 1) dx

Explanation The question is to find the given indefinite integrals. The answers should be given in the form “a
function of x +C”.

Solution

(1)
∫ (

x − 11 +
3√
x

)
dx =

∫
x dx −

∫
11 dx +

∫
3x−

1
2 dx Term by Term Integration

=
x2

2
− 11x + 3

∫
x−

1
2 dx

Power Rule, Integration of Constant
& Constant Multiple Rule

=
x2

2
− 11x + 3 · x

1
2

1
2

+ C Power Rule

=
1
2

x2 − 11x + 6
√

x + C

Remark In the second step, there is no need to add a constant of integration (because there is an indef-
inite integral in the third term). In the third step, we must add a constant of integration (otherwise, the
expression represents a function but not a family of functions).
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(2)
∫

(2x − 3)(x2 + 1) dx =

∫
(2x3 − 3x2 + 2x − 3) dx Rewrite the integrand

=

∫
2x3 dx −

∫
3x2 dx +

∫
2x dx −

∫
3 dx Term by Term Integration

= 2
∫

x3 dx − 3
∫

x2 dx + 2
∫

x dx − 3x
Constant Multiple Rule
& Integration of Constant

= 2 · x4

4
− 3 · x3

3
+ 2 · x2

2
− 3x + C Power Rule

=
x4

2
− x3 + x2 − 3x + C

�

Caution
∫ [

f (x) · g(x)
]

dx ,
∫

f (x) dx ·
∫

g(x) dx

FAQ Do we have a rule for integration that corresponds to the product rule in differentiation?

Answer In integration, corresponding to the product rule, there is a technique called integration by parts. A
brief introduction to this technique will be given in Chapter 10. �

To close this section, we give an example to illustrate the steps for finding definite integrals using rules for
integration.

Example Evaluate the following definite integrals:

(1)
∫ 2

−1
(x2 − 2x + 3) dx

(2)
∫ 1

0
x (x2 + 1) dx

Solution

(1)
∫ 2

−1
(x2 − 2x + 3) dx =

[
x3

3
− 2 · x2

2
+ 3x

]2

−1

Term by Term Integration,
Power Rule, Constant Multiple Rule
& Fundamental Theorem of Calculus

=

(
8
3
− 4 + 6

)
−

(−1
3
− 1 − 3

)

= 9

(2)
∫ 1

0
x (x2 + 1) dx =

∫ 1

0
(x3 + x2) dx Rewrite the integrand

=

[
x4

4
+

x3

3

]1

0

Term by Term Integration, Power Rule
& Fundamental Theorem of Calculus

=
1
4

+
1
3

=
7

12 �
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Exercise 6.3

1. Perform the following integration:

(a)
∫

2x5 dx (b)
∫ (

3 − 4√
x

)
dx

(c)
∫

(x7 − 3x + 2) dx (d)
∫

(x2 − √x + 3) dx

(e)
∫ 2

3x
√

x
dx (f)

∫
(x2 − 5x + 1)(2 − 3x) dx

(g)
∫

(x2 − 3)2 dx (h)
∫ x2 + 1

x2 dx

2. Evaluate the following definite integrals:

(a)
∫ 3

0 2x3 dx (b)
∫ 3
−3 2x3 dx

(c)
∫ 2
−1(1 − 5x4) dx (d)

∫ 2
0 (x4 − 3x2 + 5) dx

(e)
∫ 2
−2(x4 − 3x2 + 5) dx (f)

∫ 4
1

(
x2 +

1
2
√

x

)
dx

(g)
∫ 2

1
x2 + 1√

x
dx (h)

∫ 2
0 x (2 − 3x)2 dx

6.4 Application of Integration

Area under Graph of Function Let f be a function that is continuous
on a closed and bounded interval [a, b]. Suppose that f is nonnegative
on [a, b]. Then the area A of the region that lies below the graph of f
and above the x-axis from x = a to x = b is given by

A =

∫ b

a
f (x) dx. a b

A

y = f (x)

Figure 6.9

Example Find the area of the region that is bounded by the curve
y =
√

x, the line x = 1 and the x-axis.

Explanation The curve, the vertical line and the x-axis divide the
plane into six regions—five of them are unbounded (R1,R2,R4,R5

and R6) and one of them is bounded (R3, the required one).

R1

R2

R3 R4

R5 R6

Figure 6.10a

Solution Let f (x) =
√

x. The region under consideration lies below the graph of f and above the x-axis from
x = 0 to x = 1. The required area A is

A =

∫ 1

0
f (x) dx

=

∫ 1

0
x

1
2 dx

=


x

3
2

3
2


1

0

=
2
3

(square units).

1

A

y =
√

x

Figure 6.10b

�
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Area between Graphs of Functions Let f and g be functions
that are continuous on a closed and bounded interval [a, b]. Sup-
pose that f (x) ≤ g(x) for all x ∈ [a, b] (this means that the graph
of f lies below that of g). Then the area A of the region that is
bounded by the graphs of f and g and the vertical lines x = a and
x = b is given by

A =

∫ b

a

[
g(x) − f (x)

]
dx. a b

A

y = f (x)

y = g(x)

Figure 6.11

Proof For the case where f is nonnegative (hence the graphs of both f and g are above the x-axis), we have
A = Ag − A f , where Ag (respectively A f ) is the area of the region that lies below the graph of g (respectively
the graph of f ) and above the x-axis from x = a to x = b (see Figure 6.12a). Hence, using rules for definite
integrals (Int1) and (Int2), we have

A =

∫ b

a
g(x) dx −

∫ b

a
f (x) dx =

∫ b

a

[
g(x) − f (x)

]
dx.

a b

Ag
A f

Figure 6.12a

y = g(x)

y = g1(x)

y = f (x)

y = f1(x)

Figure 6.12b

For the general case, we can move the region upward suitably so that the graph of f is above the x-axis and
then apply the result for the case where f is nonnegative (see Figure 6.12b). Indeed, since f is continuous on
[a, b], there exists a constant k such that f (x) + k ≥ 0 for all x ∈ [a, b]. Let f1 and g1 be the functions from [a, b]
into R given by

f1(x) = f (x) + k and g1(x) = g(x) + k for a ≤ x ≤ b.

Since area is translation invariant, the required area A is equal to the area of the region that is bounded by the
graphs of f1 and g1 and the vertical lines x = a and x = b. Hence by what we obtain for the special case (since
f1 is nonnegative), we have

A =

∫ b

a

[
g1(x) − f1(x)

]
dx =

∫ b

a

[
g(x) − f (x)

]
dx.

�

Example Find the area of the region bounded by the parabola y = x2 and the line y = x + 2.
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Explanation The parabola and the line divide the plane into five regions—
four of them are unbounded (R1,R2,R3 and R5) and one of them is bounded
(R4, the required one).

Solution Solving for the x-coordinates of the intersection points of the
parabola and the line:

x2 = x + 2
x2 − x − 2 = 0

(x − 2)(x + 1) = 0,

we get x1 = −1 and x2 = 2.

R1

R2

R3

R4 R5

Figure 6.13a

-1 2

A
y = x2

y = x + 2

Figure 6.13b

The region under consideration lies below the graph of y = x + 2, above that of y = x2 (and between the
vertical lines x = −1 and x = 2). The area A of the region is

A =

∫ 2

−1

[
(x + 2) − x2

]
dx

=

[
x2

2
+ 2x − x3

3

]2

−1

=

(
2 + 4 − 8

3

)
−

(
1
2
− 2 +

1
3

)

=
9
2

(square units).
�

Example Find the area of the combined region bounded by the curve y = x3 − 5x2 + 6x and the x-axis.

Explanation The curve and the x-axis divide the plane into six regions—
four of them are unbounded (R1,R3,R4 and R5) and two of them are
bounded (R2 and R6). The two bounded regions intersect at one point and
their union forms a combined region. The question is to find the area of
R2 ∪ R6.

R1

R2 R3

R4 R5

R6

Figure 6.14a
Solution Solving for the x-coordinates of the intersection points of the
curve and the x-axis:

x3 − 5x2 + 6x = 0
x (x2 − 5x − 6) = 0

x (x − 2)(x − 3) = 0,

we get x1 = 0, x2 = 2 and x3 = 3.

The required area A is A = A1 + A2 (see Figure 6.14b).

Note that for 0 ≤ x ≤ 2, the curve is above the x-axis,

for 2 ≤ x ≤ 3, the x-axis is above the curve.
2 3

y = x3 − 5x2 + 6x

A1

A2

Figure 6.14b
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Therefore, we have

A =

∫ 2

0

[
(x3 − 5x2 + 6x) − 0

]
dx +

∫ 3

2

[
0 − (x3 − 5x2 + 6x)] dx

=

[
x4

4
− 5x3

3
+ 3x2

]2

0
−

[
x4

4
− 5x3

3
+ 3x2

]3

2

=

(
8
3
− 0

)
−

(
9
4
− 8

3

)

=
37
12
.

�

Next we will give some examples that can be done using definite integrals as well as indefinite integrals.
Before that, we give a result that is also known as the Fundamental Theorem of Calculus.

Fundamental Theorem of Calculus, Version 3 Let f be a function such that f ′ is continuous on an open
interval (a, b). Then for every x0 ∈ (a, b), we have

f (x) =

∫ x

x0

f ′(t) dt + f (x0) for all x ∈ (a, b).

Proof Let g be the function from (a, b) into R defined by

g(x) =

∫ x

x0

f ′(t) dt for a < x < b.

From the Fundamental Theorem of Calculus (Version 1), we see that g is an antiderivative for f ′ on (a, b). Since
f is also an antiderivative of f ′ on (a, b), it follows from Theorem 6.3.1 that there exists a constant k such that

f (x) − g(x) = k for all x ∈ (a, b).

Putting x = x0, we get f (x0) − g(x0) = k which yields k = f (x0) since g(x0) =
∫ x0

x0
f (t) dt = 0. Therefore we

have
f (x) = g(x) + f (x0) for all x ∈ (a, b)

and the required result follows. �

Example Find an equation for the curve that passes through the point (1, 0) and has slope function given by
x3 − 2x + 1.

Solution Let the curve be given by y = f (x). Since the curve passes through the point (1, 0), it follows that
f (1) = 0. From the given slope function, we have f ′(x) = x3 − 2x + 1. Taking x0 = 1 in the Fundamental
Theorem of Calculus (Version 3), we have

f (x) =

∫ x

1
f ′(t) dt + f (1) =

∫ x

1
(t3 − 2t + 1) dt + 0

=

[
t4

4
− t2 + t

]x

1
=

(
x4

4
− x2 + x

)
−

(
1
4
− 1 + 1

)

=
x4

4
− x2 + x − 1

4
.
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Therefore, an equation for the curve is: y =
x4

4
− x2 + x − 1

4
. �

Alternative solution The function f can also be found using indefinite integral:

f (x) =

∫
(x3 − 2x + 1) dx =

x4

4
− x2 + x + c

where the first inequality means that f is an antiderivative for (x3 − 2x + 1) and the second equality means that
f is the function given by x4

4
− x2 + x + c and c is a specific constant (which is determined by f ).

Putting x = 1, we get
0 = f (1) =

1
4
− 1 + 1 + c,

that is, c = −1
4

. Therefore, we have f (x) =
x4

4
− x2 + x − 1

4
.

Example Find the cost function if the marginal cost is 3 + 40x − 5x2 and the fixed cost is 45.

Explanation Fixed cost is the cost when x = 0.

Solution

(Method 1) Let the cost function be C. By the Fundamental Theorem of Calculus (Version 3), we have

C(x) =

∫ x

0
C′(t) dt + C(0)

=

∫ x

0
(3 + 40t − 5t2) dt + 45

=

[
3t + 20t2 − 5

3
t3
]x

0
+ 45

= 3x + 20x2 − 5
3

x3 + 45.

(Method 2) Let the cost function be C. Then we have

C(x) =

∫
(3 + 40x − 5x2) dx = 3x + 20x2 − 5

3
x3 + c,

for some constant c. Putting x = 0, we get 45 = C(0) = c and so

C(x) = 3x + 20x2 − 5
3

x3 + 45.
�

The following result is a simple consequence of the Fundamental Theorem of Calculus (Version 3). It is
known as the Net Change Theorem since f (x1) − f (x0) is the net change of the values of f as x changes from
x0 to x1.

Theorem 6.4.1 Let f be a function such that f ′ is continuous on an open interval (a, b). Then for every pair of
numbers x0, x1 in (a, b), we have ∫ x1

x0

f ′(t) dt = f (x1) − f (x0).
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Example A particle moves along a line so that its velocity at time t is v(t) = t2 − t (measured in meters per
second). Find the displacement of the particle during the time period 1 ≤ t ≤ 2.

Explanation The question is to find s(2) − s(1), where s(t) is the position of the particle at time t. Note that the
derivative of s is v.

Solution

(Method 1) By Theorem 6.4.1, the required displacement is

s(2) − s(1) =

∫ 2

1
s′(t) dt

=

∫ 2

1
(t2 − t) dt

=

[
t3

3
− t2

2

]2

1

=

(
8
3
− 2

)
−

(
1
3
− 1

2

)

=
5
6

(meter).

(Method 2) The displacement function of the particle is given by

s(t) =

∫
(t2 − t) dt =

t3

3
− t2

2
+ c,

where c is the initial position of the particle. The required displacement is

s(2) − s(1) =

(
8
3
− 2 + c

)
−

(
1
3
− 1

2
+ c

)
=

5
6

(meter).

�

Exercise 6.4

1. For each of the following, find the area of the region bounded by the given curve, the x-axis, and the
given vertical line(s).

(a) y = x3, x = 3
(b) y = x2 − 4x, x = 1, x = 2
(c) y = |x + 1| + 2, x = −2, x = 3
(d) y =

√
x + 3, x = 1 Hint: move the region appropriately.

2. For each of the following, find the area of the (combined) region bounded by the given curves (or lines).

(a) y =
√

x and y = x
(b) y = x2 − 4x − 8 and y = 2x − x2

(c) y = x and y = x (x − 2)2

(d) y = x2 − 4x + 4, y = 10 − x2 and y = 16

3. Suppose f is a function such that f ′(x) = x2 + 1 and f (1) = 2. Find f (x).

4. Suppose f is a function such that f ′′(x) = (x + 1)(x − 2), f (0) = 1 and f (1) = 0. Find f (x).

5. Water flows from the bottom of a storage tank at a rate of r(t) = 150 − 5t liters per minute, where
0 ≤ t ≤ 30. Find the amount of water that flows from the tank during the first 15 minutes.



Chapter 7

Trigonometric Functions

7.1 Angles

Idea of Definition An angle is formed by rotating a ray about its endpoint.

• The initial position of the ray is called the initial side.

• The endpoint of the ray is called the vertex.

• The final position is called the terminal side.

An angle is said to be in standard position if its vertex is at the origin and its initial side is along the positive
x-axis.

Note An angle in standard position is uniquely determined by the direction and magnitude of rotation. So we
can use numbers to represent angles.

• The direction of rotation may be counterclockwise or clockwise which will be considered to be positive
or negative respectively.

• Magnitudes of rotation are traditionally measured in degrees where one revolution is defined to be 360
degrees, written 360◦.

Figures 7.1(a), (b) and (c) show three angles in standard position: Although the angles have the same
terminal sides, their measures are different.

60◦

Figure 7.1(a)

−300◦

Figure 7.1(b)

420◦

Figure 7.1(c)

Another unit for measuring angles is the radian. To define radian, we consider unit circles.
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Terminology A circle with radius 1 is called a unit circle. The circle with
radius 1 and center at the origin is called the unit circle.

Definition The angle determined by an arc of length 1 along the circum-
ference of a unit circle is said to be of measure one radian.

1

1

1 rad.
length = 1

Figure 7.2

Since the circumference of a unit circle has length 2π, there are 2π radians in one revolution. Therefore, we
have 360◦ = 2π radians. The conversion between degrees and radians is given by

d◦ = d × π

180
radians

Thus, we have 90◦ =
π

2
(radian) and 60◦ =

π

3
(radian) for example.

Remark In calculus, it is more convenient to consider angles in radians and the unit radian is usually omitted.

Exercise 7.1

1. Convert the following degree measures to radians:

(a) 270◦ (b) 210◦

(c) 315◦ (d) 750◦

2. Convert the following radian measures to degrees:

(a) π

6
(b) 3π

4

(c) 5π
2

(d) 7π

7.2 Trigonometric Functions

Notation Consider an angle θ in standard position. Let P be the point of intersection of the terminal side and
the unit circle. We define

sin θ = y-coordinate of P, (7.2.1)

cos θ = x-coordinate of P. (7.2.2)

1

1

θ

P

Figure 7.3

Remark Instead of considering the unit circle, we can also use circle of

radius r (centered at the origin) and define cos θ =
a
r

and sin θ =
b
r

,
where a and b are the x- and y-coordinates of P respectively. It is easily
seen (using similar triangles) that these ratios are independent of the
choice of r.

Definition The rules given (7.2.1) and (7.2.2) define two functions from
R into R, called the sine and cosine functions respectively.

Using the sine and cosine functions, we define four more trigonometric functions, called the tangent (de-
noted by tan), cotangent (denoted by cot), secant (denoted by sec) and cosecant (denoted by csc) functions as
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follows:
tan x =

sin x
cos x

provided that cos x , 0,

cot x =
cos x
sin x

provided that sin x , 0,

sec x =
1

cos x
provided that cos x , 0,

csc x =
1

sin x
provided that sin x , 0.

Note Since sin x = 0 if and only if x = kπ for some integer k and cos x = 0 if and only if x =
kπ
2

for some odd
integer k, it follows that

dom (tan) = dom (sec) = R \
{
± π

2
,±3π

2
, . . .

}
,

dom (cot) = dom (csc) = R \
{
± π,±2π, . . .

}
.

Remark Below we will discuss some results for the sine, cosine and tangent functions. The secant function will
only be used in an identity and a formula for differentiating the tangent function. The cotangent and cosecant
functions will not be used in this course.

Properties

(1) The sine and cosine functions are periodic with period 2π, that is,

sin(x + 2π) = sin x for all x ∈ R,
cos(x + 2π) = cos x for all x ∈ R.

(2) The tangent function is periodic with period π, that is,

tan(x + π) = tan x for all x ∈ dom (tan).

(3) The sine function and the tangent function are odd functions and the cosine function is an even function,
that is,

sin(−x) = − sin x for all x ∈ R,
cos(−x) = cos x for all x ∈ R,
tan(−x) = − tan x for all x ∈ dom (tan).

(4) From (3), we see that the graphs of the sine function and tangent function are symmetric about the origin
and the graph of the cosine function is symmetric about the y-axis. See Figures 7.4(a), (b) and (c).

2p 4p-2p-4p

-1

1
y = sin x

Figure 7.4(a)
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2p 4p-2p-4p

-1

1 y = cos x

Figure 7.4(b)
-
p

2

p

2

y = tan x

Figure 7.4(c)

Remark The graph of the cosine function can be obtain
from that of the sine function by moving it π

2
units to the

left. This is because

cos x = sin
(
x +

π

2

)
for all x ∈ R.

CAST Rule The signs of sine, cosine and tangent in each quadrant can be memorized using the following rule:

S A

T C

where C stands for cosine, A for all, S for sine and T for tangent—for example, C in the 4th quadrant means
that if x is an angle in the fourth quadrant, then cos x is positive and the other two values sin x and tan x are
negative.

Sine, Cosine and Tangent of some Special Angles

sin 0 = 0

sin
π

6
=

1
2

sin
π

4
=

1√
2

sin
π

3
=

√
3

2

sin
π

2
= 1

cos 0 = 1

cos
π

6
=

√
3

2

cos
π

4
=

1√
2

cos
π

3
=

1
2

cos
π

2
= 0

tan 0 = 0

tan
π

6
=

1√
3

tan
π

4
= 1

tan
π

3
=
√

3

tan
π

2
undefined

The values of the sine, cosine and tangent functions at the special angles can be obtained by drawing
appropriate figures or triangles. For example, we can use Figures 7.5(a), (b) and (c) to find the values of the
trigonometric functions for angles with size π

2
, π

4
and π

6
respectively.

1

1

π
2

P(0, 1)

Figure 7.5(a)

1

1

π
4

P
( 1√

2
, 1√

2

)

Figure 7.5(b)

1

1

π
6

P
( 1√

2
, 1√

2

)

Figure 7.5(c)
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An Important Identity

(Py) sin2 x + cos2 x = 1

Explanation The result is called an identity because it is true for all x ∈ R.
Note that sin2x = (sin x)2 etc.

Proof Let P(a, b) be the point on the unit circle corresponding to angle x.
By definition, we have

sin x = b and cos x = a.

The required result then follows since a2 + b2 = 1.

1

1

cos x

sin xP

x

Figure 7.6
�

Another Identity

(Py1) 1 + tan2 x = sec2 x, x ∈ R \ { ± π

2
,±3π

2
, . . .

}

Proof 1 + tan2 x = 1 +
sin2 x
cos2 x

Definition of tan

=
cos2 x + sin2 x

cos2 x

=
1

cos2 x
Identity (Py)

=
( 1
cos x

)2

= sec2 x Definition of sec
�

More Identities

sin
(π

2
− x

)
= cos x

sin
(π

2
+ x

)
= cos x

sin(π − x) = sin x

sin(π + x) = − sin x

sin
(3π

2
− x

)
= − cos x

sin
(3π

2
+ x

)
= − cos x

sin(2π − x) = − sin x

cos
(π

2
− x

)
= sin x

cos
(π

2
+ x

)
= − sin x

cos(π − x) = − cos x

cos(π + x) = − cos x

cos
(3π

2
− x

)
= − sin x

cos
(3π

2
+ x

)
= sin x

cos(2π − x) = cos x

The above identities can be derived using appropriate figures. For example,

• from Figure 7.7(a), we get

sin
(π

2
− x

)
= a = cos x and cos

(π
2
− x

)
= b = sin x.



184 Chapter 7. Trigonometric Functions

• from Figure 7.7(b), we get

sin(π − x) = b = sin x and cos(π − x) = −a = − cos x.

1

1

π
2 − x

x

P2(b, a)

P1(a, b)

Figure 7.7(a)

1

1

π − x
x

P1(a, b)P2(−a, b)

Figure 7.7(b)

Remark The above identities can be memorized in the following way:

f
((

odd multiple of π
2

) ± x
)

is ±g(x)

f
((

even multiple of π
2

) ± x
)

is ± f (x)

where ( f , g) = (sin, cos) or (cos, sin) and the sign can be obtained by the CAST rule.

As illustrations, we describe how to obtaining the identities for

sin(π − x), cos(π − x), sin
(3π

2
+ x

)
and cos

(3π
2

+ x
)
.

• Note that π = 2 · π
2

is an even multiple of π

2
. According to the second form (the trigonometric functions

are unchanged),

(1) sin(π − x) is either sin x or − sin x

(2) cos(π − x) is either cos x or − cos x

To determine the correct sign, we assume that x belongs to the 1st quadrant and so (π − x) belongs to the
2nd quadrant. According to the CAST Rule, sin(π − x) is positive and cos(π − x) is negative (and sin x
and cos x are positive). Thus we have

(1c) sin(π − x) = sin x

(2c) cos(π − x) = − cos x

• Note that 3π
2

is an odd multiple of π

2
. According to the first form (the two trigonometric functions are

switched),

(3) sin
(3π

2
+ x

)
is either cos x or − cos x

(4) cos
(3π

2
+ x

)
is either sin x or − sin x

To determine the correct sign, we assume that x belongs to the 1st quadrant and so
(3π

2
+ x

)
belongs to

the 4th quadrant. According to the CAST Rule, sin
(3π

2
+ x

)
is negative and cos

(3π
2

+ x
)

is positive (and
sin x and cos x are positive). Thus we have

(3c) sin
(3π

2
+ x

)
= − cos x
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(4c) cos
(3π

2
+ x

)
= sin x

Remark Since the values of the sine and cosine functions at π
2

or π or 3π
2

can be found easily, the above identities
can also be derived using the following results, called compound angle formulas.

Compound Angle Formulas Let A and B be real numbers. Then we have

sin(A + B) = sin A cos B + cos A sin B cos(A + B) = cos A cos B − sin A sin B

sin(A − B) = sin A cos B − cos A sin B cos(A − B) = cos A cos B + sin A sin B

Remark The formulas for sin(A − B) and cos(A − B) can be deduced from that for sin(A + B) and cos(A + B)
respectively. This is because sin(−x) = − sin x and cos(−x) = cos x for all x ∈ R. Moreover, since sin

(π
2
− x

)
=

cos x and cos
(π

2
− x

)
= sin x, the formula for sin(A + B) can be deduced from that for cos(A + B) and vice versa.

However, the proof for either formula is very tedious and thus is omitted.

Continuity of sin and cos The sine and cosine functions are continuous
on R, that is, for every a ∈ R, we have

lim
x→a

sin x = sin a

lim
x→a

cos x = cos a

Reason If x is close to a, then the point Q lying on the unit circle that
corresponds to x is close to the point P that corresponds to a.

1

1 Q
P

x a

Figure 7.8
�

An Important Limit

(sin) lim
x→0

sin x
x

= 1

Proof First we consider right-side limit. Let x be small positive (0 < x <
π

2
).

Consider the triangles 4OAB and 4OAC and the sector OAB shown in Figure 7.9.
Note that

area of 4OAB =
1
2
· 1 · 1 · sin x =

sin x
2

area of sector OAB =
1
2
· 12 · x =

x
2

area of 4OAC =
1
2
· 1 · AC =

tan x
2

AO

B

x

C

1

Figure 7.9
Since 4OAB ⊆ sector OAB ⊆ 4OAC, it follows that

sin x
2

<
x
2
<

tan x
2

.

Dividing each term by sin x
2

(which is positive), we get

1 <
x

sin x
<

1
cos x

,
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which, by taking reciprocal, yields

1 >
sin x

x
> cos x. (7.2.3)

By the continuity of the cosine function (at 0), we have

lim
x→0

cos x = cos 0 = 1. (7.2.4)

Letting x → 0+, by (7.2.3) and (7.2.4) together with the Sandwich Theorem (which is also valid for limits at a
point and one-sided limits), we get

lim
x→0+

sin x
x

= 1.

Since
sin x

x
is an even function, that is,

sin(−x)
−x

=
sin x

x
for all x , 0, it follows that lim

x→0−
sin x

x
= 1. Therefore,

we have lim
x→0

sin x
x

= 1. �

Remark

• The result means that if x is small, then sin x is approximately equal to x.

• If x is in degrees, the result is different: lim
x→0

sin x◦

x
=

π

180
.

-10 -5 5 10
-0.2

0.2

0.4

0.6

0.8

1

y =
sin x

x

Figure 7.10
The following result will be used in deriving the formula for

d
dx

sin x.

A Limit Result

(cos−1) lim
h→0

cos h − 1
h

= 0

Explanation To get the limit, we try to “cancel” the factor h in the denominator. However, the numerator is not
a polynomial. Instead of making a factor h in the numerator, we try to make a factor sin h and apply (sin).

Proof lim
h→0

cos h − 1
h

= lim
h→0

(cos h − 1)(cos h + 1)
h(cos h + 1)

Note: cos h + 1 , 0 if h ≈ 0

= lim
h→0

cos2 h − 1
h(cos h + 1)

= lim
h→0

− sin2 h
h(cos h + 1)

Identity (Py)

= lim
h→0

[
(− sin h) · sin h

h
· 1

cos h + 1

]

= lim
h→0

(− sin h) × lim
h→0

sin h
h
× lim

h→0

1
cos h + 1

Limit Rule (La5)

= (− sin 0) · 1 · 1
cos 0 + 1

Continuity of sin & cos
and Limit Result (sin)

= 0.
�
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Exercise 7.2

1. For each of the following, find its value without using calculators.

(a) sin 2π
3

(b) cos 2π
3

(c) tan 2π
3

(d) sin 5π
4

(e) cos 5π
4

(f) tan 5π
4

2. For each of the following limits, find its value.

(a) lim
x→0

tan x
x

(b) lim
x→0

sin 2x
x

7.3 Differentiation of Trigonometric Functions

Derivative of sin The sine function is differentiable on R and its derivative is the cosine function, that is,

d
dx

sin x = cos x, −∞ < x < ∞.

Proof
d
dx

sin x = lim
h→0

sin(x + h) − sin x
h

Definition of Derivative

= lim
h→0

sin x · cos h + cos x · sin h − sin x
h

Compound Angle Formula

= lim
h→0

(sin x · cos h − sin x) + cos x · sin h
h

= lim
h→0

sin x (cos h − 1) + cos x · sin h
h

= lim
h→0

(
sin x · cos h − 1

h

)
+ lim

h→0

(
cos x · sin h

h

)
Limit Rule (La4)

= sin x · lim
h→0

cos h − 1
h

+ cos x · lim
h→0

sin h
h

Limit Rule (La5s)

= sin x · 0 + cos x · 1 Limit Results (cos−1) and (sin)

= cos x. �

Derivative of cos The cosine function is differentiable onR and its derivative is the negative of the sine function,
that is,

d
dx

cos x = − sin x, −∞ < x < ∞.
Proof Similar to that for the derivative of the sine function, the result can be proved by definition, using the
compound angle formula cos(x + h) = cos x cos h − sin x sin h. �

Remark Note that cos x = sin
(π

2
− x

)
. The result can also be proved using the result for the derivative of the

sine function. together with the chain rule which will be discussed in the Chapter 9.

Derivative of tan The tangent function is differentiable on its domain and its derivative is the square of the
secant function, that is,

d
dx

tan x = sec2x, x , ±π
2
,±3π

2
, . . . .
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Proof For x ∈ dom (tan) = R \ {±π
2
,±3π

2
, . . .}, we have

d
dx

tan x =
d
dx

(
sin x
cos x

)
Definition of tan

=
cos x · d

dx
sin x − sin x · d

dx
cos x

cos2 x
Quotient Rule

=
cos x · cos x − sin x · (− sin x)

cos2 x
Derivatives of sin and cos

=
1

cos2 x
Identity (Py)

=

(
1

cos x

)2

= (sec x)2 Definition of sec �

Example For each of the following y, find
dy
dx

.

(1) y = 2 sin x − 7 cos x

(2) y = tan x − x

(3) y = x cos x

(4) y =
sin x
x + 1

Solution

(1)
dy
dx

=
d
dx

(2 sin x − 7 cos x) Substitution

= 2 · d
dx

sin x − 7 · d
dx

cos x Term by Term Differentiation & Constant Multiple Rule

= 2 cos x − 7(− sin x) Derivative of sin and cos

= 2 cos x + 7 sin x

(2)
dy
dx

=
d
dx

(tan x − x) Substitution

=
d
dx

tan x − d
dx

x Term by Term Differentiation

= sec2 x − 1 Derivative of tan and Power Rule

= tan2 x Identity (Py1)

(3)
dy
dx

=
d
dx

(x2 cos x) Substitution

= x2 · d
dx

cos x + cos x · d
dx

x2 Product Rule

= x2 · (− sin x) + cos x · 2x Derivative of sin and Power Rule

= 2x cos x − x2 sin x
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(4)
dy
dx

=
d
dx

(
sin x
x + 1

)
Substitution

=
(x + 1) · d

dx
sin x − sin x · d

dx
(x + 1)

(x + 1)2 Quotient Rule

=
(x + 1) · cos x − sin x · (1 + 0)

(x + 1)2
Derivative of sin and
Derivative of Polynomial

=
(x + 1) cos x − sin x

(x + 1)2 �

Exercise 7.3

1. For each of the following y, find dy
dx

.

(a) y = 5 cos x − 2x (b) y = 1 − 2 tan x
(c) y = sin x − x2 (d) y = x2 sin x

(e) y = cos2x (f) y =
1

cos x

(g) y = sin x · cos x (h) y =
cos x
x3 + 1

(i) y = (x + cos x)2 (j) y = (sin x + cos x)2

2. Let y = sinn x.

(a) Find dy
dx

for n = 2, 3 and 4.

(b) Guess for formula for dy
dx

for general n (positive integer).

3. Let y = sin nx and let z = cos nx.

(a) Find dy
dx

and dz
dx

for n = 2. Hint: use compound angle formulas.

(b) Find dy
dx

and dz
dx

for n = 3. Hint: use compound angle formulas and the results in (a).

(c) Guess for formula for dy
dx

and dz
dx

for general n (positive integer).

4. Let f (x) = sin(ax + b) and let g(x) = cos(ax + b) where a and b are constants.

(a) Use definition to find f ′(x) and g′(x).
(b) Use the results in (a) to find f ′′(x) and g′′(x)
(c) Guess for formula for f (n)(x) and g(n)(x) for general n (positive integer).
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Chapter 8

Exponential and Logarithmic Functions

8.1 Exponential Functions

Definition Let 0 < b , 1. We define expb to be the function from R into R given by

expb(x) = bx, x ∈ R.
The function expb is called the exponential function with base b.

Remark

• If x is a rational number, such as x =
4
3

, then bx = b
4
3 =

3√
b4.

• If x is an irrational number such as x =
√

2, to define bx we use approximations: more precisely we use
limits.

Example To assign a value to 3
√

2:

Note that √
2 = 1.414213562373095 · · ·

We may use 31.4 = 3
14
10 to give an approximate value for 3

√
2. For better ap-

proximations, we may use 31.41, 31.414 and so on. Denote

a1 = 1.4, a2 = 1.41, a3 = 1.414, a4 = 1.4142, a5 = 1.41421, . . .

It can be shown that the sequence

3a1 , 3a2 , 3a3 , 3a4 , . . .

is convergent and 3
√

2 is defined to be the limit of the sequence.

n 3an

1 4.655536722

2 4.706965002

3 4.727695035

4 4.728733930

5 4.728785881

6 4.728801466

7 4.728804064

8 4.728804376

9 4.728804386

...

FAQ Instead of the above sequence (an), can we take other sequences (bn) of rational numbers converging
to
√

2 and use lim
n→∞ 3bn to define 3

√
2?

Answer You can take any sequence (bn) converging to
√

2. It can be shown (but difficult!) that lim
n→∞ 3bn

always exists and is independent of the choice of (bn). �
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FAQ In the definition of exponential functions, why do we exclude b = 1?

Answer When b = 1, the function 1x = 1 is trivial: a constant function. It does not enjoy the injective property
possessed by expb where b , 1. When we define logarithmic functions, we need exponential functions be
injective.

We need b > 0 because we want expb(x) = bx to be defined for all real numbers x. If b is zero, b−1 is
undefined; if b is negative, b

1
2 is undefined. �

Rules for Exponent Let a and b be positive real numbers different from 1. Then for every x ∈ R and every
y ∈ R, we have

(1) axay = ax+y (2)
ax

ay = ax−y

(3) (ax)y = axy (4) (ab)x = axbx

(5)
( a

b

)x
=

ax

bx (6) a1 = a

(7) a0 = 1 (8) a−x =
1
ax

Proof The results follow from the corresponding rules for that with rational exponents (see an FAQ on page 36).

Continuity of Exponential Functions By definition, the domain of every exponential function is R. It can be
shown that exponential functions are continuous on R, that is, if x is close to x0, then bx is close to bx0 .

Range of Exponential Functions Since expb(x) = bx is always positive, it follows that the ranges of the
exponential functions are contained in (0,∞). In fact, we have

range (expb) = (0,∞).

Proof For b > 1, since lim
x→∞ bx = ∞ and lim

x→−∞ bx = 0, it follows that the exponential function expb can attain
arbitrarily large values as well as arbitrarily small positive values. Hence by the Intermediate Value Theorem,
it can attain any positive value. Therefore, the range of expb is (0,∞).

For 0 < b < 1, the range of expb is also (0,∞). This is because expb(x) = exp 1
b
(−x) by Rule for Expo-

nents (8). �

Graph of Exponential Functions In general, the graph of an exponential function has one of two general
shapes depending on the value of the base b.

y = bx
(b > 1)

Figure 8.1(a)

y = bx
(0 < b < 1)

Figure 8.1(b)

Remark

• The graph of y = bx and that of y =

(
1
b

)x

are symmetric about the y-axis. This is be-
cause b−x =

(
1
b

)x
.

• As x increases, the graph goes up if b > 1
and goes down if 0 < 1 < b.
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Consider the expression st.

• If we let s = b (> 0) be a fixed positive real number and let t = x varies in R, then we get a function
x 7→ bx, which is the exponential function expb if b , 1 or the constant function 1 if b = 1.

• If we let t = r be a fixed real number and let s = x varies in (0,∞), we get a power function x 7→ xr.

Continuity of Power Functions It can be shown that for every real number r, the power function xr is contin-
uous on (0,∞).

Recall that a function f is said to be injective if the following condition is satisfied:

(∗) If x1, x2 ∈ dom ( f ) and x1 , x2, then f (x1) , f (x2).

Condition (∗) is equivalent to the following condition:

(∗∗) If x1, x2 ∈ dom ( f ) and f (x1) = f (x2), then x1 = x2.

If dom ( f ) is a subset of R and the codomain of f is R, then f is injective means that the graph of f intersects
every horizontal line in at most one point.

Injectivity of expb The exponential functions expb (0 < b , 1) are injective.

Proof Let s, t ∈ R and s , t. Without loss of generality, we may assume that s < t. Then we have bs < bt if
b > 1 and bs > bt if 0 < b < 1. In any case, we have expb(s) , expb(t). Thus, the exponential functions expb

(0 < b , 1) are injective. �

Remark The graph of y = bx intersects the horizontal line y = c in exactly one point if c > 0 and in no point if
c ≤ 0.

Exponential Equations To solve simple equations involving exponentials, we use the fact that exponential
functions are injective.

Example For each of the following equations, find its solution set.

(1) 32x−1 =
1

35−x

(2) 8x2
= 4x+4

Explanation To use the injective property of the exponential functions, we have to express both sides of the
equation in the form bsomething. For (1), we can take b = 3 and for (2), we can take b = 2.

Solution

(1) 32x−1 =
1

35−x

32x−1 = 3−(5−x) Rewrite right-side

32x−1 = 3x−5

2x − 1 = x − 5 Injectivity of exp3

x = −4

The solution set is {−4}.
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(2) 8x2
= 4x+4

(
23)x2

=
(
22)x+4 Rewrite both sides

23x2
= 22(x+4)

3x2 = 2(x + 4) Injectivity of exp2

3x2 − 2x − 8 = 0

(x − 2)(3x + 4) = 0

The solution set is
{
2,−4

3

}
.

�

The number e It can be shown that lim
x→∞

(
1 +

1
x

)x

exists. The following table and figure illustrate this fact (the

proof of the fact is beyond the scope of this course). This limit will be denoted by e, that is,

e = lim
x→∞

(
1 +

1
x

)x

.

x
(
1 + 1/x

)x

10 2.59374

100 2.70481

1000 2.71692

10000 2.71815

20000 2.71821

30000 2.71824

40000 2.71825

10000 20000 30000 40000

2.714

2.716

2.718

y =
(
1 +

1
x

)x

Figure 8.2

Remark It can be shown that e is an irrational number (the proof is not easy!). The following gives the value of
e correct to 50 decimal places:

2.71828182845904523536028747135266249775724709369996 . . .

Notation and Terminology We write exp (omitting the base) to denote the exponential function with base e.
When we say the exponential function, we mean the function exp.

Remark As usual, we also write ex to denote the exponential function with base e.

Below we discuss two situations in which the number e appears.

Interests Compounded Continuously When money is invested at a given annual rate, the interest earned
depends on how frequently interest is compounded.

Consider a principal of P dollars invested for t years at an annual rate of r. If interest is compounded k
times a year, then the rate per conversion period is r

k
and there are kt periods. The compounded amount A(t) at

the end of t years is given by

A(t) = P
(
1 +

r
k

)kt
.
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If k → ∞, the number of conversion periods increases indefinitely and the length of each period approaches 0.
In this case, we say that interest is compounded continuously. The compounded amount Ac(t) at the end of t
years is

Ac(t) = lim
k→∞

P
(
1 +

r
k

)kt

= P lim
k→∞

(
1 +

r
k

) k
r ·rt Limit Rule (L5s)

and rewrite exponent

= P
 lim
k→∞

(
1 +

r
k

) k
r

rt

Continuity of Power Function

= P
[

lim
x→∞

(
1 +

1
x

)x]rt

Put x =
k
r

Note that the limit inside the brackets is the number e. Therefore we have the following formula:

Ac(t) = Pert.

Radioactive Decay Suppose that the initial amount (at t = 0) of a radioactive substance is A0. Then the amount
A(t) of the substance at time t is given by

A(t) = A0e−λt,

where λ is a (positive) constant, called the decay constant of the substance.

Remark For example, the decay constant of carbon 14 is about 0.00012.

(1) To find the amount at a certain time t, we can just plug in
the value of t. If we want to find the time so that the amount
is reduced to A1, we need to solve the following equation
for t

A1 = A0e−λt.

This will be discussed in the next section.

(2) The half-life of a radioactive element is the length of time
required for a given quantity of the element to decay to
one-half of its original mass. For example, the half-life of
carbon 14 is about 5730 years.

A0

1
2

A0

thalf

Figure 8.3

Exercise 8.1

1. For each of the following, sketch the graphs of the given equations on the same coordinate plane.

(a) y = 2x, y = 2.5x, y = 3x

(b) y = 2x, y = (1
2

)x

(c) y = 2x, y = 2x + 1, y = 2x − 2

(d) y = 2x, y = 2x+1, y = 2x−2

2. For each of the function f , find its domain and range.

(a) f (x) = 3x + 1 (b) f (x) =
1

3x + 1

(c) f (x) =
1

3x − 1
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3. For each of the following equations, find its solution set.

(a) 22x = 2x2−3 (b) ex+2 = 1
(c) ex+2 = 0 (d) x2ex = 2xex

8.2 Logarithmic Functions

For each b > 0 with b , 1, the exponential function expb is injective and its range is (0,∞). Thus it has an
inverse whose domain is (0,∞).

Definition Let 0 < b , 1. We define logb to be the inverse of the exponential function expb. The function logb

is called the logarithmic function with base b.

Remark logb is the function from (0,∞) into R such that the following two conditions are satisfied:

(Log1) logb(bx) = x for all x ∈ R;

(Log2) blogb y = y for all y ∈ (0,∞).

By the definition of inverse, we have the following:

x = logb y means y = bx. (8.2.1)

Example For each of the following, convert it to an equivalent logarithmic form.

(1) 52 = 25

(2) 100 = 1

Solution Using (8.2.1), we obtain

(1) log5 25 = 2

(2) log10 1 = 0

Example For each of the following, convert it to an equivalent exponential form.

(1) log10 1000 = 3

(2) log2
1

16
= −4

Solution Using (8.2.1), we obtain

(1) 103 = 1000

(2) 2−4 =
1

16

Continuity of logb It can be shown that logarithmic functions are continuous on (0,∞).

Graphs of Logarithmic Functions For every b > 0 with b , 1, since the logarithmic function logb is the
inverse of the exponential function expb, it follows that the graph of logb and that of expb are symmetric about
the line x = y.
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y = bx

y = logb x

(b > 1)

Figure 8.4(a)

y = bx

y = logb x

(0 < b < 1)

Figure 8.4(b)

Terminology and Notation Logarithms with the base 10 are called common logarithms. They were frequently
used for computational purposes before the calculator age. The subscript 10 is usually omitted:

log x means log10 x.

In calculus, logarithms with base e, called natural logarithms, are more important. We use the notation “ln” for
such logarithms:

ln x means loge x.

Caution Many students write ln as In (which, of course, is not correct). To avoid this, some authors write `n
for natural logarithm. Note that the letter “l” comes from the word “logarithm” and the letter “n” comes from
“natural”.

Remark In many advanced books, common logarithm is never used and the symbol “log” stands for natural
logarithm.

Properties of Logarithms

(1) logb 1 = 0

(2) logb b = 1

(3) logb(mn) = logb m + logb n (logarithm of product is sum of logarithms)

(4) logb
1
m

= − logb m

(5) logb
m
n

= logb m − logb n (logarithm of quotient is difference of logarithms)

(6) logb mr = r logb m

(7) logb br = r

(8) blogb m = m

(9) logb m =
loga m
loga b

(change of base formula)

where m, n, a, b are positive real numbers with a and b different from 1 and r can be a real number.

Proof

(1) Since b0 = 1, it follows from (8.2.1) that logb 1 = 0.
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(2) Since b1 = b, it follows from (8.2.1) that logb b = 1.

(3) Denote x = logb m and y = logb n. By (8.2.1), we have bx = m, by = n which implies that

mn = bxby

= bx+y Rule of Exponent (1).

Again by (8.2.1), we have logb(mn) = x + y from which we get the required equality.

(4) Note that logb m + logb
1
m

= logb
(
m · 1

m

)
Property (3)

= logb 1
= 0 Property (1).

Thus the required equality follows.

(5) Apply Properties (3) and (4).

(6) Denote y = logb m. By (8.2.1), we have by = m which implies that

mr = (by)r

= bry Rule of Exponent (3).

Again by (8.2.1), we have logb mr = ry from which we get the required equality.

(7) The result follows from the definition of logarithmic functions. See (Log1). Alternatively, we may apply
Properties (6) and (2).

(8) The result follows from the definition of logarithmic functions. See (Log2).

(9) Denote x = logb m. By (8.2.1), we have bx = m. Take the logarithm to the base a of both sides, we get

loga bx = loga m.

By Property (6), we have x loga b = loga m, which implies that x =
loga m
loga b

. The required equality then
follows.

�

Caution In general, logb(m + n) , logb m × logb n See Property (3) for the correct form.

logb(m − n) , logb m ÷ logb n See Property (5) for the correct form.

Example For each of the following, find its values (without using calculators).

(1) log6 54 − log6 9

(2) e4 ln 3−3 ln 4

Solution

(1) log6 54 − log6 9 = log6
54
9

Property (5)

= log6 6

= 1 Property (2)
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(2) e4 ln 3−3 ln 4 = eln 34−ln 43
Property (6)

= eln 81−ln 64 Property (5)

= eln 81
64

=
81
64

Property (8) �

Exponential and Logarithmic Equations To solve simple equations involving logarithms and exponentials,
we may use the following methods:

• Apply (8.2.1) to change logarithmic form to its equivalent exponential form or vice versa.

• Use the fact that logarithmic functions and exponential functions are injective (examples of simple equa-
tions involving are given in the last section).

Remark The inverse function of every injective function is injective. In particular, logarithmic functions
are injective.

Example For each of the following equations, find its solution set.

(1) log2 x = −3

(2) ln(2x + 1) = 4

(3) logx 49 = 2

(4) e3x = 14

Solution

(1) log2 x = −3

2−3 = x by (8.2.1)
1
8

= x

The solution set is
{1

8

}
.

(2) ln(2x + 1) = 4

e4 = 2x + 1 by (8.2.1)
e4 − 1 = 2x

The solution set is
{e4 − 1

2

}
.

(3) logx 49 = 2

x2 = 49 and x > 0 by (8.2.1) and condition of base

x = ±7 and x > 0

The solution set is {7}.
(4) e3x = 14

ln 14 = 3x and x > 0 by (8.2.1)

The solution set is
{ ln 14

3

}
.

�
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Example Solve the equation log2 x = 5 − log2(x + 4).

Explanation To apply (8.2.1), we have to rewrite the equation in the form logb m = n. Note that in the expres-
sions log2 x and log2(x + 4), it is assumed that x > 0 and x + 4 > 0 respectively.

Alternatively, we may use the fact that logarithmic functions are injective. In order to apply this, we have
to express both sides of the equation in the form logb(something).

Solution 1 log2 x = 5 − log2(x + 4)

log2 x + log2(x + 4) = 5

log2 x (x + 4) = 5 and x > 0 and x + 4 > 0 Property (3) & Domain of log2

x (x + 4) = 25 and x > 0 by (8.2.1)

x2 + 4x − 32 = 0 and x > 0

(x + 8)(x − 4) = 0 and x > 0

The solution set is {4}. �

Solution 2 log2 x = log2 25 − log2(x + 4) Property (6)

log2 x = log2
25

x + 4
Property (5)

x =
25

x + 4
and x > 0 Injectivity of log2 & Domain of log2

x (x + 4) = 32 and x > 0

x2 + 4x − 32 = 0 and x > 0

(x + 8)(x − 4) = 0 and x > 0

The solution set is {4}. �

Half-Life To find the half-life of a radioactive element, we have to solve

1
2

A0 = A0e−λt.

Taking ln on both sides, or equivalently, using (8.2.1), we get

ln
1
2

= −λt

− ln 2 = −λt Property (4)

t =
ln 2
λ
.

This gives the relation between the half-life thalf and the decay constant λ.

Exercise 8.2

1. For each of the following, convert it to an equivalent logarithmic form.

(a) 92 = 81 (b) 2 =
√

4 (c) 1
2

= 2−1

2. For each of the following, convert it to an equivalent exponential form.

(a) log2 8 = 3 (b) log9 27 =
3
2

(c) ln 1 = 0
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3. Simplify the following:

(a)
3
2 ln 4 − 2 ln 2

3
2 ln 8

(b)
2
3 log 8 + 1

2 log 9
log 6 + log 2

4. For each of the following equations, sketch its graph.

(a) y = log x (b) y = log3 x
(c) y = ln x (d) y = log 1

3
x

(e) y = log x2 (f) y = 2 log x
(g) y = log(2x − 1)

5. For each of the following functions, find its domain and range.

(a) f (x) = ex + 1 (b) f (x) = ex2

(c) f (x) = ln x2 (d) f (x) = 2 ln x
(e) f (x) = ln(2x − 1) (f) f (x) = ln(x2 − 4)

6. For each of the following equations, find its solution set.

(a) log16 x =
1
2

(b) logx 4 =
2
5

(c) 9x−1 = 3x+1 (d) x ln x = ln x2

(e) 2 log(x − 1) = log(x2 − 5) (f) log(x − 3) = log(7x − 9) − 1

7. For each of the following, find x correct to 3 significant figures.

(a) 10x = 123.4 (b) ex = 5678
(c) log x = −13.57 (d) ln x = 0.0187
(e) 1.03754x = 2 (f) logx 5 = 2.34

8. How long will it take money to double if it is invested at 2.275% interest compounded

(a) annually; (b) quarterly; (c) monthly; (d) continuously

Give your answer in years correct to two decimal places.

8.3 Differentiation of the Exponential and Logarithmic Functions

Derivative of ln The natural logarithmic function is differentiable on (0,∞) and its derivative is the reciprocal
function, that is,

d
dx

ln x =
1
x
, x > 0.

Proof
d
dx

ln x = lim
h→0

ln(x + h) − ln(x)
h

Definition of Derivative

= lim
h→0

ln
(

x + h
x

)

h
Log Property (5)

= lim
h→0

[
1
h
· ln

(
1 +

h
x

)]

= lim
h→0

[
1
x
· x

h
· ln

(
1 +

h
x

)]
continued on next page



202 Chapter 8. Exponential and Logarithmic Functions

d
dx

ln x =
1
x
· lim

h→0

ln
(
1 +

h
x

) x
h
 Limit Rule (La5s) & Log Property (6)

=
1
x

ln

lim
h→0

(
1 +

h
x

) x
h
 Continuity of ln

=
1
x

ln
[
lim
t→∞

(
1 +

1
t

)t]
Put t =

x
h

=
1
x
· ln e Definition of e

=
1
x

Log Property (2)
�

Example For each of the following y, find
dy
dx

.

(1) y = 2 + 3 ln x

(2) y = sin x · ln x

(3) y = cos x + ln x2

(4) y = x ln 2x

Solution

(1)
dy
dx

=
d
dx

(2 + 3 ln x)

=
d
dx

2 +
d
dx

(
3 ln x

)
Term by Term Differentiation

= 0 + 3 · d
dx

ln x Derivative of Constant & Constant Multiple Rule

=
3
x

Derivative of ln

(2)
dy
dx

=
d
dx

(sin x · ln x)

= sin x · d
dx

ln x + ln x · d
dx

sin x Product Rule

=
sin x

x
+ ln x · cos x Derivatives of ln & sin

(3)
dy
dx

=
d
dx

(cos x + ln x2)

=
d
dx

cos x +
d
dx

ln x2 Term by Term Differentiation

= − sin x +
d
dx

(2 ln x) Derivative of cos & Log Property (6)

= − sin x + 2 · d
dx

ln x Constant Multiple Rule

= − sin x +
2
x

Derivatives of ln
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(4)
dy
dx

=
d
dx

(x ln 2x)

= x · d
dx

(ln 2x) + ln 2x · d
dx

x Product Rule

= x · d
dx

(ln 2 + ln x) + ln 2x Log Property (3) & Power Rule

= x ·
(
0 +

1
x

)
+ ln 2x Derivatives of Constant & ln

= 1 + ln 2x �

Differentiation of Logarithmic functions with other bases To differentiate other logarithmic functions logb x
where b , e, we can use change of base formula:

logb m =
ln m
ln b

.

Example Find the derivative of y = log2(5x3).

Solution
dy
dx

=
d
dx

log2(5x3)

=
d
dx

(
ln 5x3

ln 2

)
Change of Base Formula

=
1

ln 2
· d

dx
(ln 5 + 3 ln x) Constant Multiple Rule and Log Properties (3) & (6)

=
1

ln 2

(
d
dx

ln 5 +
d
dx

(3 ln x)
)

Term by Term Differentiation

=
1

ln 2

(
0 + 3 · d

dx
ln x

)
Derivative of Constant & Constant Multiple Rule

=
1

ln 2
· 3 · 1

x
Derivative of ln

=
3

x ln 2 �

To find a formula for the derivative of the exponential function exp, we use the fact that the functions ln and
exp are inverses of each other and we need the following:

Inverse Function Rule
dx
dy

=
1
dy
dx

Explanation More precisely, we have the following result called the Inverse Function Theorem.

Let f be a function defined on an open interval (a, b). Suppose that f is differentiable on (a, b) and f ′(x) , 0
for all x ∈ (a, b). Then on (a, b), the function f is injective, the image of (a, b) under f is an open interval,
denoted by (c, d). Moreover, the inverse function f −1 is differentiable on (c, d) and

(
f −1)′(η) =

1
f ′(ξ)

for all η ∈ (c, d), where ξ = f −1(η).
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If we denote y = f (x), then x = f −1(y) gives the inverse function and we have
dy
dx

= f ′(x) and
dx
dy

=
(
f −1)′(y).

The Inverse Function Rule is a compact way to express the relation between the derivatives of f and f −1. Below,
we show how to derive the rule:

dy
dx

= lim
∆x→0

∆y
∆x

Definition of Derivative

= lim
∆x→0

1
∆x
∆y

Note: ∆y , 0

=
1

lim
∆x→0

∆x
∆y

Continuity of Reciprocal Function

=
1

lim
∆y→0

∆x
∆y

Continuity of f

=
1
dx
dy

Definition of Derivative

�

Derivative of exp The exponential function is differentiable on R and its derivative is the function itself, that
is,

d
dx

ex = ex, −∞ < x < ∞.

Proof Put y = ex. Then we have x = ln y. From these we get,

d
dx

ex =
dy
dx

Substitution

=
1
dx
dy

Inverse Function Rule

=
1

d
dy

ln y
Substitution

=
1
1
y

Derivative of ln

= y

= ex Substitution
�

Example For each of the following y, find
dy
dx

.

(1) y = 2ex − 3
x

(2) y = x5ex

(3) y =
ex

sin x
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Solution

(1)
dy
dx

=
d
dx

(
2ex − 3

x

)

=
d
dx

(2ex) − d
dx

(3x−1) Term by Term Differentiation

= 2 · d
dx

ex − 3 · d
dx

x−1 Constant Multiple Rule

= 2 · ex − 3 · (−1) · x−2 Derivative of exp & Power Rule

= 2ex + 3x−2

(2)
dy
dx

=
d
dx

(
x5ex

)

= ex · d
dx

x5 + x5 · d
dx

ex Product Rule

= ex · 5x4 + x5 · ex Power Rule & Derivative of exp

= (x5 + 5x4) ex

(3)
dy
dx

=
d
dx

(
ex

sin x

)

=
sin x · d

dx
ex − ex · d

dx
sin x

sin2 x
Quotient Rule

=
sin x · ex − ex · cos x

sin2 x
Derivatives of exp & sin

=
ex (sin x − cos x)

sin2 x �

Differentiation of Exponential functions with Bases different from e To differentiate other exponential
functions expb where b , e, we can express bx in the form esomething. Alternatively, we can use a technique
called logarithmic differentiation. Both methods depends on the Chain Rule (see Chapter 9).

To close this chapter, we use the inverse function rule to find the derivative of the arctangent function. The
result will be used in the discussion of integration of rational functions. The inverse function rule can also be
used to find the derivatives of the functions sin−1 and cos−1 and are left as exercises.

Derivative of tan−1 The arctangent function is differentiable on R and we have

d
dx

tan−1x =
1

1 + x2 , −∞ < x < ∞.

Explanation Although the tangent function is not injective, it becomes injective when we restrict the domain
to (−π

2
,
π

2

)
. Note that the range is R. The inverse of the function tan : (−π

2
,
π

2

) −→ R is called the arctangent
function, denoted by arctan or tan−1. Thus tan−1 is the function from R into (−π

2
,
π

2

)
such that

tan(tan−1x) = x for all x ∈ R and tan−1(tan x) = x for all x ∈ (−π
2
,
π

2

)
.
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Proof Put y = tan−1x. Then we have x = tan y. From these we get

d
dx

tan−1x =
dy
dx

Substitution

=
1
dx
dy

Inverse Function Rule

=
1

d
dy

tan y
Substitution

=
1

sec2 y
Derivative of tan

=
1

1 + tan2 y
Identity (Py1)

=
1

1 + x2 Substitution
�

Exercise 8.3

1. For each of the following y, find dy
dx

.

(a) y = 2x3 − 4ex − 5 (b) y = ln x − 1
(c) y = ex + ln x (d) y = x2 + ln x2

(e) y = ex +
√

x (f) y = ln
√

x − 1
(g) y = ex sin x (h) y = cos x ln x
(i) y = (x2 + 1)ex (j) y = (x2 + 1) ln x

(k) y =
ex

cos x
(l) y =

ln x
sin x

(m) y =
x3 + 3x2 + 6x − 2

ex (n) y =
x3 + 3x2 + 6x − 2

ln x

2. For each of the following f , find f ′(a) for the given a.

(a) f (x) = ex tan x, a = 0

(b) f (x) =
ln x

x2 + 1
, a = 1

3. For each of the following f , find d2y
dx2 .

(a) y = x2 + x − 1 − ex

(b) y = 1 − ln x − 1
x

4. Use the inverse function rule to prove the following:

(a) d
dx

sin−1x =
1√

1 − x2
, −1 < x < 1

(b) d
dx

cos−1x = − 1√
1 − x2

, −1 < x < 1

Note: The functions sin−1 and cos−1 are the inverses of the injective functions sin :
[ − π

2
,
π

2

] −→ [−1, 1]
and cos : [0, π] −→ [−1, 1] respectively.



Chapter 9

More Differentiation

9.1 Chain rule

Up to this stage, we know how to differentiate “simple” functions like the following:

• f (x) = x5 + 1

• f (x) =
x − 1
x + 1

• f (x) = sin x

• f (x) = ex + 2 tan x

• f (x) =
ln x

cos x
− ex

x2 + 1

using simple rules for differentiation and formulas derived in the last few chapters. But for more “complicated”
functions, like the following:

• f (x) = sin(x2)

• f (x) = ex2+1

• f (x) = ln(1 + 2x)

we need the chain rule. It is one of the most important rules for finding derivatives, used for differentiating
composite functions.

Chain Rule
dy
dx

=
dy
du
· du

dx

Explanation More precisely, we have the following result for differentiation of composition of functions.

Let f be a function that is differentiable on an open interval (a, b). Let g be a function that is differentiable
on an open interval containing the image of (a, b) under f . Then the composition g◦ f is differentiable on (a, b).
Moreover, we have

(g ◦ f )′(ξ) = g′
(
f (ξ)

) · f ′(ξ) for all ξ ∈ (a, b).

If we denote u = f (x) and denote y = g(u), then y = g
(
f (x)

)
is a function of x. Note that (g◦ f )′ =

dy
dx

, g′ =
dy
du

and f ′ =
du
dx

. The Chain Rule is a compact way to express the relation between the derivatives of g ◦ f , g and
f . Below we show how to derive the rule (with an additional assumption):
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dy
dx

= lim
∆x→0

∆y
∆x

= lim
∆x→0

(
∆y
∆u
· ∆u

∆x

)
Assume ∆u , 0

= lim
∆x→0

∆y
∆u
· lim

∆x→0

∆u
∆x

Limit Rule (L.5)

= lim
∆u→0

∆y
∆u
· lim

∆x→0

∆u
∆x

Continuity of f

=
dy
du
· du

dx

Example Find
d
dx

(x2 + 5)3

(1) without using chain rule;

(2) using chain rule.

Solution

(1)
d
dx

(x2 + 5)3 =
d
dx

(x6 + 15x4 + 75x2 + 125) Rewrite the function

= 6x5 + 15 · 4x3 + 75 · 2x + 0 Term by Term Differentiation,
Constant Multiple Rule & Power Rule

= 6x5 + 60x3 + 150x

(2) Put u = x2 + 5 and put y = u3. Then we have y = (x2 + 5)3. From these we get

d
dx

(x2 + 5)3 =
dy
dx

Substitution

=
dy
du
· du

dx
Chain Rule

=
d
du

u3 · d
dx

(x2 + 5) Substitution

= 3u2 · (2x + 0) Power Rule and Term by Term Differentiation

= 3(x2 + 5)2 · 2x Substitution

= 6x (x2 + 5)2

�

Remark

• It is straightforward to check that the above two results are the same.

• If we change the function to (x2 + 5)
1
3 , we can’t apply the first method but can still apply the second

method which makes use of the chain rule together with the power rule.

We can combine the chain rule with any formula to get a more general formula. In the table below, the gen-
eral form gives the derivative of g◦ f where g is a power function, the sine function etc. and f is a differentiable
function such that g ◦ f is defined (for example, in order that ln[ f (x)] be defined, we have to assume that f is



9.1. Chain rule 209

positive). These formulas will be referred as the Chain Rule & Power Rule, Chain Rule & Derivative of sin etc.
For the Power Rule, we have seen that it is true if r is an integer or a rational number in the form n +

1
2

where n
is an integer. In fact, it is true for all real numbers r. We will prove this result (called the General Power Rule)
later using logarithmic differentiation which is based on the Chain Rule & Derivative of ln.

Simple Form General Form

d
dx

xr = rxr−1 d
dx

[ f (x)]r = r[ f (x)]r−1 · d
dx

f (x)

d
dx

sin x = cos x
d
dx

sin[ f (x)] = cos[ f (x)] · d
dx

f (x)

d
dx

cos x = − sin x
d
dx

cos[ f (x)] = − sin[ f (x)] · d
dx

f (x)

d
dx

tan x = sec2 x
d
dx

tan[ f (x)] = sec2[ f (x)] · d
dx

f (x)

d
dx

ex = ex d
dx

e f (x) = e f (x) · d
dx

f (x)

d
dx

ln x =
1
x

d
dx

ln[ f (x)] =
1

f (x)
· d

dx
f (x)

Proof We give the proof for the 1st, 2nd and 6th formulas. The proofs of the rest are left as exercises.

(1) Put u = f (x) and put y = ur. Then we have y = [ f (x)]r. From these we get

d
dx

[ f (x)]r =
dy
dx

Substitution

=
dy
du
· du

dx
Chain Rule

=
d

du
ur · du

dx
Substitution

= rur−1 · du
dx

Power Rule

= r[ f (x)]r−1 · d
dx

f (x) Substitution

(2) Put u = f (x) and put y = sin u. Then we have y = sin[ f (x)]. From these we get

d
dx

sin[ f (x)] =
dy
dx

Substitution

=
dy
du
· du

dx
Chain Rule

=
d

du
sin u · du

dx
Substitution

= cos u · du
dx

Derivative of sin

= cos[ f (x)] · d
dx

f (x) Substitution
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(6) Put u = f (x) and put y = ln u. Then we have y = ln[ f (x)]. From these we get

d
dx

ln[ f (x)] =
dy
dx

Substitution

=
dy
du
· du

dx
Chain Rule

=
d

du
ln u · du

dx
Substitution

=
1
u
· du

dx
Derivative of ln

=
1

f (x)
· d

dx
f (x) Substitution

�

Example For each of the following y, find
dy
dx

.

(1) y = sin(x2 + 1)

(2) y = ex2+2

(3) y = ln(x2 − 3)

(4) y = ex2+tan x2

(5) y = ln[sin2(2x + 3)]

(6) y =
1

(x2 + 3)4

(7) y = ex+1 ln(x2 + 1)

Solution

(1)
dy
dx

=
d
dx

sin(x2 + 1)

= cos(x2 + 1) · d
dx

(x2 + 1) Chain Rule & Derivative of sin

= 2x cos(x2 + 1) Term by Term Differentiation and Power Rule

(2)
dy
dx

=
d
dx

ex2+2

= ex2+2 · d
dx

(x2 + 2) Chain Rule & Derivative of exp

= 2x ex2+2 Term by Term Differentiation and Power Rule

(3)
dy
dx

=
d
dx

ln(x2 − 3)

=
1

x2 − 3
· d

dx
(x2 − 3) Chain Rule & Derivative of ln

=
2x

x2 − 3
Term by Term Differentiation and Power Rule
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(4)
dy
dx

=
d
dx

ex2+tan x2

= ex2+tan x2 · d
dx

(x2 + tan x2) Chain Rule & Derivative of exp

= ex2+tan x2 ·
( d
dx

x2 +
d
dx

tan x2
)

Term by Term Differentiation

= ex2+tan x2 ·
(
2x + sec2x2 · d

dx
x2

)
Power Rule and Chain Rule & Derivative of tan

= ex2+tan x2 · (2x + sec2x2 · 2x) Power Rule

= 2x (1 + sec2x2) ex2+tan x2

(5)
dy
dx

=
d
dx

ln[sin2(2x + 3)]

=
1

sin2(2x + 3)
· d

dx
sin2(2x + 3) Chain Rule & Derivative of ln

=
1

sin2(2x + 3)
· d

dx
[sin(2x + 3)]2 Rewrite sin2 u as (sin u)2

=
1

sin2(2x + 3)
· 2 sin(2x + 3) · d

dx
sin(2x + 3) Chain Rule & Power Rule

=
1

sin2(2x + 3)
· 2 sin(2x + 3) · cos(2x + 3) · d

dx
(2x + 3) Chain Rule & Derivative of sin

=
4 cos(2x + 3)
sin(2x + 3)

Term by Term Differentiation
and Power Rule

Remark In the above solution, we apply the chain rule thrice. Alternatively, we may use a property of
logarithm and apply the chain rule twice.

Alternative solution
dy
dx

=
d
dx

ln[sin2(2x + 3)]

=
d
dx

ln[sin(2x + 3)]2 Rewrite the function

=
d
dx

2 ln[sin(2x + 3)] Log Property (6)

= 2 · d
dx

ln[sin(2x + 3)] Constant Multiple Rule

= 2 · 1
sin(2x + 3)

· d
dx

sin(2x + 3) Chain Rule & Derivative of ln

=
2

sin(2x + 3)
· cos(2x + 3) · d

dx
(2x + 3) Chain Rule & Derivative of sin

=
4 cos(2x + 3)
sin(2x + 3)

Term by Term Differentiation
and Power Rule
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(6)
dy
dx

=
d
dx

1
(x2 + 3)4

=
d
dx

(x2 + 3)−4 Rewrite the function

= (−4) · (x2 + 3)−5 · d
dx

(x2 + 3) Chain Rule & Power Rule

=
−4

(x2 + 3)5 · 2x Term by Term Differentiation and Power Rule

=
−8x

(x2 + 3)5

Remark If we apply the quotient rule in the first step, we still have to apply the chain rule in a later step.

(7)
dy
dx

=
d
dx

(
ex+1 · ln(x2 + 1)

)

= ex+1 · d
dx

ln(x2 + 1) + ln(x2 + 1) · d
dx

ex+1 Product Rule

= ex+1 · 1
x2 + 1

· d
dx

(x2 + 1) + ln(x2 + 1) · ex+1 · d
dx

(x + 1)
Chain Rule & Derivative of ln and
Chain Rule & Derivative of exp

=
2x ex+1

x2 + 1
+ ex+1 ln(x2 + 1)

Term by Term Differentiation
and Power Rule �

Remark Instead of using the General Form given in the table on page 209, some authors use the chain rule
directly by writing down the expression for u. Below we redo (1) and (2) in the last example using such
notations.

(1)
dy
dx

=
d
dx

sin(x2 + 1)

=
d

d(x2 + 1)
sin(x2 + 1) · d

dx
(x2 + 1) Chain Rule (replace u by x2 + 1)

= 2x cos(x2 + 1)
Term by Term Differentiation, Power Rule
& Derivative of sin

(2)
dy
dx

=
d
dx

ex2+2

=
d

d(x2 + 2)
ex2+2 · d

dx
(x2 + 2) Chain Rule (replace u by x2 + 2)

= 2x ex2+2 Term by Term Differentiation, Power Rule
& Derivative of exp

Logarithmic Differentiation Suppose that y is a differentiable function of x and that y is always positive.
Then the composition ln y is a differentiable function of x. Moreover, by the Chain Rule & Derivative of ln, we
have

d
dx

ln y =
1
y
· dy

dx
. (9.1.1)
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Using properties of logarithms, we may be able to find d
dx

ln y. In this case, we can then find dy
dx

using (9.1.1.
This method is called logarithmic differentiation.

Below we will apply logarithmic differentiation to proof the General Power Rule and do an example to
illustrate how to find the derivatives of exponential functions with bases different from e.

General Power Rule Let r be a real number. Then the power function xr is differentiable on (0,∞). Moreover,
we have

d
dx

xr = rxr−1, x > 0.

Explanation We can use logarithmic differentiation because ln xr = r ln x can be differentiated easily.

Proof Put y = xr. Taking natural logarithm and using Log Property (6), we get

ln y = r ln x.

Differentiating both sides with respect to x, we get

d
dx

ln y =
d
dx

(
r ln x

)

1
y
· dy

dx
= r · 1

x
Chain Rule & Derivative of ln,
Constant Multiple Rule and Derivative of ln

dy
dx

= y · r
x

= xr · r
x

Substitution

= rxr−1

�

Example Find
d
dx

5x2+cos x.

Explanation The given function is in the form b f (x) where b , e and f is a differentiable function such that f ′

can be found easily. Its derivative can be found by the following two methods:

(Method 1) Express b f (x) in the form eg(x) and then apply Chain Rule & Derivative of exp.

(Method 2) Use logarithmic differentiation: note that ln b f (x) = f (x) ln b can be differentiated easily.

Solution 1 Note that 5u = eln 5u
= eu ln 5 by Log Properties (8) and (6). Therefore, we have

d
dx

5x2+cos x =
d
dx

e(x2+cos x) ln 5 Rewrite the function

= e(x2+cos x) ln 5 · d
dx

(x2 + cos x) · ln 5 Chain Rule & Derivative of exp

= e(x2+cos x) ln 5 · ln 5 · (2x − sin x)
Constant Multiple Rule, Term by Term Differentiation,
Power Rule and Derivative of cos

= (2x − sin x) 5x2+cos x ln 5 Rewrite the function

Solution 2
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(Step 1) Put y = 5x2+cos x.

(Step 2) Taking natural logarithm, we get
ln y = (x2 + cos x) ln 5.

(Step 3) Differentiating both sides with respect to x, we get

d
dx

ln y =
d
dx

(x2 + cos x) ln 5

1
y
· dy

dx
= ln 5 · (2x − sin x)

Chain Rule & Derivative of ln,
Constant Multiple Rule, Term by Term Differentiation,
Power Rule and Derivative of cos

dy
dx

= y (2x − sin x) ln 5

= (2x − sin x) 5x2+cos x ln 5 Substitution
�

Exercise 9.1

1. Find dy
dx

for the following:

(a) y = (2x3 + 5x2)6 (b) y =
√

9 + 4x

(c) y =

√
4x2 + 5

3
(d) y = cos 5x

(e) y = sin(6x − 7) (f) y = sin4x
(g) y = cos5(6x − 7) (h) y = 4x sin 3x

(i) y = tan(8x3 + 1) (j) y =
tan x
x + 2

(k) y = 2e3x + 4x − 5 (l) y = x ex2

(m) y =
x2

ex (n) y = ln 8x

(o) y = ln(5 − 2x) (p) y = ln(1 − x2)
(q) y = ln

√
2x + 11 (r) y = 3x ln x

(s) y = ln(ln x) (t) y = ex2
ln x

(u) y = etan x (v) y = tan(ex)
(w) y = sin(e5x) (x) y = esin 5x

(y) y = cos[ln(4x2 + 9)] (z) y = ln[cos(4x2 + 9)]

2. Use logarithmic differentiation to find dy
dx

for the following:

(a) y = 2x2+1 (b) y = xx

(c) y = (sin x)cos x (d) y =
(2x + 1)(3x + 4)5

(x2 + 7)8

3. Ecologists estimate that when the population of a certain city is x thousand persons, the average level L of
carbon monoxide in the air above the city will be L ppm (parts per million), where L = 10+0.4x+0.001x2.
The population of the city is estimated to be x = 345 + 22t + 0.5t2 thousand persons t years from the
present.

(a) Find the rate of change of carbon monoxide with respect to the population of the city.
(b) Find the time rate of change of the population when t = 3.
(c) How fast (with respect to time) is the carbon monoxide level changing at time t = 3?
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4. Suppose that f and g are differentiable functions such that f (1) = 2, f ′(1) = 3, f ′(5) = 4, g(1) = 5,
g′(1) = 6, g′(2) = 7 and g(5) = 8. Find d

dx
f (g(x))

∣∣∣∣
x=1

.

9.2 Implicit Differentiation

Implicit differentiation is a technique for differentiating functions that are not given in the usual form y = f (x).
We use the following example (Solution 2) to illustrate the general procedure.

Example Find the slope of the line tangent to the circle

x2 + y2 = 4 (9.2.1)

at the point
(√

2,
√

2
)
.

Explanation There are two methods to find the slope.

(1) The first method is to rewrite the equation of the circle (in fact, semi-circle) in the form y = f (x). The
slope at the given point is f ′

(√
2

)
. From (9.2.1), solving y in terms of x, we get y = ±

√
4 − x2. But this

doesn’t give a function since certain value of x (say x = 1) gives two values of y. Note that the point(√
2,
√

2
)

lies on the upper semi-circle. To consider the required slope, we take y =
√

4 − x2.

(2) The second method is to differentiate both sides of Equation (9.2.1) with respect to x. For the left-side,
to find d

dx
y2 we can use the Chain Rule & Power Rule by treating y = f (x) as a function of x.

Solution 1 From (9.2.1) and noting that the point
(√

2,
√

2
)

lies on the upper circle, we get y =
√

4 − x2.
Differentiating, we get

dy
dx

=
d
dx

(4 − x2)
1
2

=
1
2
· (4 − x2)−

1
2 · d

dx
(4 − x2) Chain Rule & Power Rule

=
1

2 · (4 − x2)
1
2

· (−2x)
Term by Term Differentiation,
and Power Rule

=
−x√

4 − x2
.

The slope of the tangent at
(√

2,
√

2
)

is

dy
dx

∣∣∣∣∣
x=
√

2
=
−√2√

2
= −1.

�

Solution 2 Differentiate both sides of (9.2.1) with respect to x, we get

d
dx

(x2 + y2) =
d
dx

(4)

d
dx

x2 +
d
dx

y2 = 0
Term by Term Differentiation
and Derivative of Constant

2x + 2y
dy
dx

= 0
Power Rule and
Chain Rule & Power Rule
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Solving for dy
dx

, we get
dy
dx

= − x
y
.

At
(√

2,
√

2
)
, the slope of the tangent is

dy
dx

∣∣∣∣
(
√

2,
√

2 )
= −
√

2√
2

= −1.

�

In general, although an equation of the form

F(x, y) = 0 (9.2.2)

usually defines y as a function of x implicitly, it may be difficult to express y in terms of x explicitly. By treating
y as a function of x, the left-side of (9.2.2) becomes a function of x. To find dy

dx
, we may differentiate both

sides of (9.2.2) with respect to x and then solve for dy
dx

(in terms of x and y). This method is called implicit
differentiation.

Example Use implicit differentiation to find
dy
dx

given that x3 + 4xy2 − 7 = y3.

Explanation To apply implicit differentiation, we assume that y is a function of x. Thus, 4xy2 is a function of x
and y3 is a function of x. Moreover, 4xy2 can be treated as a product of functions of x.

Solution Differentiate both sides of the given equation with respect to x, we get

d
dx

(x3 + 4xy2 − 7) =
d
dx

(y3)

d
dx

x3 +
d
dx

(4xy2) − d
dx

7 = 3y2 · dy
dx

Term by Term Differentiation and
Chain Rule & Power Rule

3x2 + 4x · d
dx

(y2) + y2 · d
dx

(4x) − 0 = 3y2 dy
dx

Power Rule and Product Rule

3x2 + 4x ·
(
2y · dy

dx

)
+ y2 · 4 = 3y2 dy

dx
Chain Rule & Power Rule,
Constant Multiple Rule and Power Rule

3x2 + 8xy
dy
dx

+ 4y2 = 3y2 dy
dx
.

Solving for dy
dx

, we get

3x2 + 4y2 = 3y2 dy
dx
− 8xy

dy
dx

Collect similar terms

3x2 + 4y2 =
dy
dx
· (3y2 − 8xy) Extract common factor

dy
dx

=
3x2 + 4y2

3y2 − 8xy
.

�

Caution dy
dx

(3y2 − 8xy) and d
dx

(3y2 − 8xy) are different. The first expression is the product of dy
dx

and 3y2 − 8xy
whereas the second one is the derivative of 3y2 − 8xy.
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Example Find
dy
dx

given that y ln x = x ey − 1.

Explanation The question is to use implicit differentiation to find dy
dx

(it is difficult or even impossible to solve
y as a function of x explicitly).

Solution Differentiating both sides of the given equation with respect to x, we get
d
dx

(
y ln x

)
=

d
dx

(
x ey − 1

)

y · d
dx

ln x + ln x · dy
dx

=

(
x · d

dx
ey + ey · d

dx
x
)
− d

dx
1 Term by Term Differentiation

y · 1
x

+ ln x · dy
dx

= x · ey · dy
dx

+ ey Derivatives of ln & exp
and Power Rule.

Solving for dy
dx

, we get

x ln x
dy
dx
− x2ey dy

dx
= x ey − y

Multiply by x and
collect similar terms

dy
dx
· (x ln x − x2ey) = x ey − y Extract common factor

dy
dx

=
x ey − y

x ln x − x2ey . �

Example Find the slope of the curve with equation

x sin y + cos y2 = 1

at the point (1, 0).

Explanation The required slope is dy
dx

∣∣∣∣
(1,0)

. We use implicit differentiation to find dy
dx

and then substitute (x, y) =

(1, 0).

Solution Differentiating both sides of the given equation with respect to x, we get
d
dx

(
x sin y + cos y2

)
=

d
dx

1

d
dx

(x sin y) +
d
dx

cos y2 = 0
Term by Term Differentiation
and Derivative of Constant

(
x · d

dx
sin y + sin y · d

dx
x
)

+ (− sin y2) · d
dx

y2 = 0
Product Rule and
Chain Rule & Derivative of cos

(†)
(
x · cos y · dy

dx
+ sin y · 1

)
− sin y2 · 2y · dy

dx
= 0

Derivative of sin, Power Rule and
Chain Rule & Power Rule.

Solving for
dy
dx

, we get

sin y = 2y sin y2 dy
dx
− x cos y

dy
dx

Collect similar terms

sin y =
dy
dx
· (2y sin y2 − x cos y) Extract common factor

dy
dx

=
sin y

2y sin y2 − x cos y
.
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The slope of the curve at (1, 0) is
dy
dx

∣∣∣∣∣
(1,0)

=
sin 0

0 − cos 0
= 0.

�

Remark Alternatively, we can substitute (x, y) = (1, 0) into (†) to get

cos 0 · dy
dx

∣∣∣∣∣
(1,0)

+ sin 0 · dy
dx

∣∣∣∣∣
(1,0)

= 0 · dy
dx

∣∣∣∣∣
(1,0)

which yields
dy
dx

∣∣∣∣∣
(1,0)

= 0.

Related Rates In implicit differentiation, we differentiate an equation involving x and y, with y treated as a
function of x. However, in some applications where x and y are related by an equation, they are functions of a
third variable, for example, time t. If we differentiate such an equation with respect to t, we get a relationship
between the rates of change dy

dt
and dx

dt
. These derivatives are called related rates.

Example The radius of a circle is increasing at the rate of 3 cm per second. Find the rate of change of the area
inside the circle when the radius is 5 cm.

Explanation Both the area A and the radius r of the circle are functions of time t. It is give that dr
dt

= 3. The

question is to find dA
dt

when r = 5.

Solution The area A and the radius r of the circle are related by

A = πr2.

Differentiating both sides of the equation with respect to time t, we get

d
dt

A =
d
dt
πr2

dA
dt

= π · 2r · dr
dt

Constant Multiple Rule and
Chain Rule & Power Rule.

dA
dt

= 2πr · 3 Given that dr
dt

= 3

Thus at the instant where r = 5, we have
dA
dt

= 2π · 5 · 3 = 30π.

That is, the area is increasing at the rate of 30π cm2 per second. �

Example A point is moving along the graph of 4x2 + y2 = 8. When the point is at (1, 2), its x-coordinate is
increasing at the rate of 3 units per second. How fast is the y-coordinate changing at that moment?

Explanation The question is to find dy
dt

when (x, y) = (1, 2), given that dx
dt

= 3 at that instant.

Solution Differentiating both sides of the equation with respect to time t, we get

d
dt

(4x2 + y2) =
d
dt

8

d
dt

4x2 +
d
dt

y2 = 0
Term by Term Differentiation
and Derivative of Constant

4 · 2x · dx
dt

+ 2y · dy
dt

= 0 Chain Rule & Power Rule
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Solving for dy
dt

, we get

dy
dt

=
−8xdx

dt
2y

=
−4x

y
· dx

dt
.

At the given moment, we have
dy
dt

=
−4 · 1

2
· 3 = −6.

That is, the y-coordinate is decreasing at a rate of 6 units per second. �

Exercise 9.2

1. For each of the following equations, find dy
dx

.

(a) xy2 − x2 + y = 0 (b) x3 + y3 − 6xy = 0
(c) x5 + 4xy3 − 3y5 = 1 (d) x sin y + y2 = 1
(e) sin(x + y) = y cos x (f) ey = x2 + y2

(g) x3 − y2 = x ln y (h) x ey + y sin x = ln(x + y)

2. Foe each of the following curves represented by the given equations, find the slope at the indicated point.

(a) 2y3 + y2 − x = 0, (3, 1)
(b) xy2 − 3y3 + 8 = 0, (4, 2)

(c) y sin x + 3 cos y = 3 + cos x,
(π

2
, 0

)

(d) ln y = 2y2 − x + 1, (3, 1)
(e) ln(x + sin y) = x2 + 2ey − 3, (1, 0)
(f) x3 + y2 + x3ey2

= 1, (0, 1)

3. A point is moving on the graph of xy = 24. When the point is at (4, 6), its x-coordinate is increasing at 5
units per second. How fast is the y-coordinate changing at that moment?

4. The radius of a spherical balloon is increasing at the rate of 5 cm per minute. How fast is the volume
changing when the radius is 8 cm?

5. A 3 m ladder is placed against a wall. Suppose that the foot of the ladder is pulled along the ground at
the rate of 1 m per second. How fast is the top end of the ladder sliding down the wall at the time when
the foot is 2 m from the wall?

9.3 More Curve Sketching

Example Let f (x) = x ln x.

(1) Find and classify the critical number(s) of f .

(2) Find the interval(s) on which f is increasing or decreasing, convex or concave.

(3) Sketch the graph of f .

Solution

(1) & (2) First we note that the domain of f is (0,∞).
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Differentiating f , we get f ′(x) =
d
dx

(x ln x)

= x · d
dx

ln x + ln x · d
dx

x

= x · 1
x

+ ln x

= 1 + ln x.

Solving f ′(x) = 0, 1 + ln x = 0

ln x = −1

we get the critical number of f : x1 = e−1.

(0, e−1) (e−1,∞)

f ′ − +

The function f is decreasing on (0, e−1) and increasing on (e−1,∞).

Thus f has a local minimum at x1 = e−1.

Differentiating f ′, we get f ′′(x) =
d
dx

(1 + ln x)

=
1
x
.

(0,∞)

f ′′ +

The function f is convex on (0,∞).

(3) The graph of f is shown in Figure 9.1.

11
�����

ã

1

1

y = x ln x

Figure 9.1
�

Example Sketch the graph of f (x) = sin x + cos x for 0 ≤ x ≤ 2π. On the graph, indicate the local extremum
points and inflection points.

Solution Differentiating f , we get f ′(x) =
d
dx

(sin x + cos x)

= cos x − sin x.
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Solving f ′(x) = 0, cos x = sin x

tan x = 1

we get the critical number of f in the interval (0, 2π): x1 =
π

4
and x2 =

5π
4

.

(
0, π

4

) (π
4
,

5π
4

) (5π
4
, 2π

)

f ′ + − +

The function f is increasing on
(
0, π

4

)
, decreasing on

(π
4
,

5π
4

)
and increasing on

(5π
4
, 2π

)
.

Thus
(π

4
, f (π

4
)
)

=
(π

4
,
√

2
)

is a local maximum point and
(5π

4
, f (5π

4
)
)

=
(5π

4
,−√2

)
is a local minimum point of

the graph.

Differentiating f ′, we get f ′′(x) =
d
dx

(cos x − sin x)

= − sin x − cos x.

Solving f ′′(x) = 0 in the interval [0, 2π]
− cos x = sin x

−1 = tan x

we get the zeros of f ′′ in the interval (0, 2π): x3 =
3π
4

and x4 = 7π
4 .

(
0, 3π

4

) (3π
4
,

7π
4

) (7π
4
, 2π

)

f ′′ − + −

The function f is concave on
(
0, 3π

4

)
, convex on

(3π
4
,

7π
4

)
and concave on

(7π
4
, 2π

)
.

Thus
(3π

4
, f (3π

4
)
)

=
(3π

4
, 0

)
and

(7π
4
, f (7π

4
)
)

=
(7π

4
, 0

)
are inflection points of the graph of f .

Π

������

4
3 Π
�����������

4

5 Π
�����������

4

7 Π
�����������

4

-1

1 y = sin x + cos x

Figure 9.2
�

Remark

• Because the sine and cosine functions are periodic with period 2π, we can use the above graph to get the
whole graph of f .
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Π

������

4
2 Π

1

y = sin x + cos x

Figure 9.3

• Note that
f (x) = sin x + cos x

=
√

2
(

1√
2

sin x +
1√
2

cos x
)

=
√

2
(
cos

π

4
sin x + sin

π

4
cos x

)

=
√

2
(
sin

(
x +

π

4
))

Compound angle formula

Thus the graph of f can be obtained from that of the sine function by shifting it π
4

units to the left and

then amplifying it by a factor of
√

2.

Exercise 9.3

1. For each of the following equations, sketch its graph.

(a) y = e−x2
(b) y = x e−x

(c) y = x − ln x (d) y =
ln x

x

(e) y = x − 2 sin x (f) y = sin2 x

(g) y = x −
√

1 − x2 (h) y =
1√

1 + 2x2

9.4 More Extremum Problems

Example Among all line segments that stretch from points on the positive x-axis to points on the positive
y-axis and passes through the point (5, 2), find the one that has shortest length.

Explanation The length of the line segment can be expressed as a function of any one of the following: (1) the
x-intercept of the line segment; (2) the slope of the line segment; (3) the angle between the line segment and
the x-axis.

(5, 2)

A(x, 0)

B(0, y)

Figure 9.4(a)

(5, 2)

A(x, 0)

B(0, y)

θ

Figure 9.4(b)

Note that in Figure 9.4(a), we have x > 5 and in Figure 9.4(b), we have 0 < θ <
π

2
. Moreover, if m denotes the

slope of the line segment, then we have m < 0.
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Solution 1 Let A(x, 0) and B(0, y) be the points of intersection of the line segment with the x- and y-axes
respectively. We want to minimize the length

L =

√
x2 + y2.

Since the line segment passes through (5, 2), we get the following relationship between x and y.

y − 2
0 − 5

=
2 − 0
5 − x

y =
−10
5 − x

+ 2

=
2x

x − 5

Therefore, we have L =

√
x2 +

(
2x

x − 5

)2

.

Since L is a minimum when L2 is a minimum, we consider minimizing

f (x) = x2 +
4x2

(x − 5)2 , x > 5.

Differentiating, we get

f ′(x) = 2x +
(x − 5)2 · d

dx
(4x2) − 4x2 · d

dx
(x − 5)2

(
(x − 5)2)2

= 2x +
(x − 5)2 · 8x − 4x2 · 2(x − 5)

(x − 5)4

= 2x +
8x (x − 5) − 8x2

(x − 5)3

= 2x +
−40x

(x − 5)3 .

Solving f ′(x) = 0, 2x =
40x

(x − 5)3

(x − 5)3 = 20 since x > 5 implies x , 0

x − 5 = 20
1
3

we get the critical number of f in (5,∞): x1 = 5 +
3√20.

(5, 5 +
3√20) (5 +

3√20,∞)

f ′ − +
Note that f ′(x) =

2x (x − 5)3 − 40x
(x − 5)3 =

2x [(x − 5)3 − 20]
(x − 5)3 .

Since f is decreasing on (5, 5 +
3√20) and increasing on (5 +

3√20,∞), it follows that f attains its absolute
minimum at x1. Therefore, the shortest line segment is the one that has x-intercept equal to (5 +

3√20, 0). �

Solution 2 Let A(x, 0) and B(0, y) be the points of intersection of the line segment with the x- and y-axes
respectively. We want to minimize the length

L =

√
x2 + y2.
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Note that both x and y are functions of the slope m of the line segment:

2 − 0
5 − x

= m

2
m

= 5 − x

x = 5 − 2
m

and
y − 2
0 − 5

= m

y − 2 = −5m

y = 2 − 5m

Therefore, we have L =

√(
5 − 2

m

)2

+ (2 − 5m)2 =

√
25m2 − 20m + 29 − 20

m
+

4
m2

Since L is a minimum when L2 is a minimum, we consider minimizing

f (m) = 25m2 − 20m + 29 − 20
m

+
4

m2 , m < 0.

Differentiating, we get

f ′(m) =
d

dm

(
25m2 − 20m + 29 − 20m−1 + 4m−2

)

= 50m − 20 + 20m−2 − 8m−3

Solving f ′(m) = 0, 50m − 20 + 20m−2 − 8m−3 = 0

25m4 − 10m3 + 10m − 4 = 0 Multiply both sides by m3

2

(5m − 2)(5m3 + 2) = 0 Factor Theorem: L.S . = 0 when m =
2
5

5m3 + 2 = 0 Since m < 0

m3 = −2
5
,

we get the critical number of f : m1 =
3
√
−2

5
.

Differentiating f ′, we get

f ′′(m) =
d

dm

(
50m − 20 + 20m−2 − 8m−3

)

= 50 − 40m−3 + 24m−4.

Note that
f ′′(m1) = 50 − 40 ·

(
− 5

2

)
+ 24 ·

(5
2

) 4
3 > 0

and that m1 is the only critical number of f in the open interval (−∞, 0), it follows from the Second Derivative
Test (Special Version) that f attains its global minimum at m1. Therefore, the shortest line segment is the one

that has slope equal to 3
√
−2

5
. �

Remark Corresponding to m1, we have x1 = 5 − 2
3
√
−2

5

= 5 + 2 ·
(5

2

) 1
3

= 5 + 20
1
3 .

Solution 3 Let θ be the angle between the line segment and the x-axis. By considering the two right-angled
triangles shown in Figure 9.4(b), we have

cos θ =
x
L

and tan θ =
2

x − 5
,
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from which we get

L =
x

cos θ
=

5 +
2

tan θ
cos θ

.

We want to minimize
L(θ) =

5
cos θ

+
2

sin θ
, 0 < θ < π

2
.

Differentiating, we get

dL
dθ

=
d
dθ

(
5 · (cos θ)−1 + 2 · (sin θ)−1

)

= 5 · (−1) · (cos θ)−2 · d
dθ

cos θ + 2 · (−1) · (sin θ)−2 · d
dθ

sin θ

= 5 · (−1) · (cos θ)−2 · (− sin θ) + 2 · (−1) · (sin θ)−2 · cos θ

=
5 sin θ
cos2 θ

− 2 cos θ
sin2 θ

.

Solving
dL
dθ

= 0,
5 sin θ
cos2 θ

=
2 cos θ
sin2 θ

5 sin3 θ = 2 cos3 θ

tan3 θ =
2
5
,

we get the critical number of L in
(
0, π

2

)
: θ1 = tan−1 3

√
2
5

.

(
0, tan−1 3

√
2
5

) (
tan−1 3

√
2
5
,
π

2

)

dL
dθ

− +
Note that dL

dθ
=

5 sin3 θ − 2 cos2 θ

sin2 θ cos2 θ
=

5 cos3 θ
(

tan3 θ − 2
5
)

sin2 θ cos2 θ
.

Since L is decreasing on
(
0, tan−1 3

√
2
5

)
and increasing on

(
tan−1 3

√
2
5
,
π

2

)
, it follows that L attains its minimum at

θ1. Therefore, the shortest line segment is the one that makes an angle tan−1 3
√

2
5

with the x-axis. �

Remark Corresponding to θ1, we have x1 = 5 +
2

3
√

2
5

= 5 +
3√20.

Example A recording company has produced a new CD. Before launching a sales campaign, the marketing
research department wants to determine the length of the campaign that will maximize total profits. From
empirical data, it is estimated that the proportion of a target group of 50000 persons buying the CD after t
days of TV promotion is given by 1 − e−0.06t. If $20 is received for each CD sold and the promotion cost is
C(t) = 200000 + 12000t.

(1) How many days of TV promotion should be used to maximize the profit?

(2) What is the maximum profit?

(3) What percentage of the target group will have purchased the CD when the maximum profit is reached?

Explanation The number of days is a positive integer. In order to apply differentiation, we enlarge the domain
to (0,∞).
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Solution The revenue (in dollars) after t days of promotion is

R(t) = 20 × 50000 × (1 − e−0.06t).

Therefore, the profit (in dollars) is

P(t) = 1000000(1 − e−0.06t) − 200000 − 12000t.

We want to maximize P(t) for positive integers t. First, we consider P as a function with domain (0,∞).
Differentiating, we get

P′(t) =
d
dt

(
1000000(1 − e−0.06t) − 200000 − 12000t

)

= 1000000 · (−e−0.06t) · d
dt

(−0.06t) − 12000

= 60000e−0.06t − 12000.

Solving P′(t) = 0, 60000e−0.06t = 12000
e−0.06t = 0.2
−0.06t = ln 0.2,

we get the critical number of P in (0,∞): t1 =
ln 0.2
−0.06

.

(
0, ln 0.2
−0.06

) ( ln 0.2
−0.06

,∞)

P′ + −

Since P is increasing on
(
0, ln 0.2
−0.06

)
and decreasing on

( ln 0.2
−0.06

,∞)
, it follows that on (0,∞), P attains its maximum

at t1. However t1 ≈ 26.8 is not an integer. Comparing the profit at t2 = 26 and t3 = 27:

t 26 27

P 277864 278101

we see that

(1) 27 days of TV promotion should be used to maximize the profit;

(2) the maximum profit is $278101;

(3) 1 − e−0.06×27 ≈ 80% of the target group will have purchased the CD.
�

Exercise 9.4

1. Find the area of the largest rectangle that has one side on the x-axis and two vertices on the curve y = e−x2
.

2. Suppose the price-demand equation for a product is determined from empirical data to be p = 100e−0.05q

where q is the number of units sold. Find the production level and price that maximize revenue. What is
the maximum revenue?

3. A lake polluted by bacteria is treated with an antibacterial chemical. After t days, the number N of
bacteria per ml of water is approximated by

N(t) = 20(
t

12
− ln(

t
12

)) + 30
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for 1 ≤ t ≤ 15. During this time
(a) when will the number of bacteria be a minimum? what is the minimum?
(b) when will the number of bacteria be a maximum? what is the maximum?

4. A company wishes to run an utility cable from a point A on the shore to an installation at point B on the
island. The island is 6 km from the shore where C is the nearest point. Assume that the cable starts at a
point A on the shore and runs along the shoreline, then angles and runs underwater to the island. It costs
$3200 per km to run the cable on land and $4000 per km underwater. Find the point at which the line
should begin to angle in order to yield the minimum cost if

(a) the distance between A and C is 9 km;
(b) the distance between A and C is 7 km.

5. A light source is to be placed directly above the center of a circular table of radius 1.5 m. The illumination
at any point on the table is directly proportional to the sine of the angle between the table and the line
joining the source and the point and inversely proportional to the square of the distance from the source.
Find the height above the circle at which illumination on the edge of the table is maximized.

6. A long piece of metal one meter wide is to be bent in two places, 1
3 meter from the two ends, to form a

spillway so that its cross-section is an isosceles trapezoid. Find the angle θ at which the bend should be
formed in order to obtain maximum possible flow along the spillway.

θθ



228 Chapter 9. More Differentiation



Chapter 10

More Integration

10.1 More Formulas

Using formulas for differentiation discussed in previous chapters, we get the corresponding formulas for inte-
gration.

Integration Formula 1
∫

xr dx =
xr+1

r + 1
+ C where −1 , r ∈ R

Integration Formula 2
∫

sin x dx = − cos x + C

Integration Formula 3
∫

cos x dx = sin x + C

Integration Formula 4
∫

sec2x dx = tan x + C

Integration Formula 5
∫

1
1 + x2 dx = tan−1x + C

Integration Formula 6
∫

ex dx = ex + C

Integration Formula 7
∫

1
x

dx = ln |x| + C

Explanation For each of the above formulas, the equality is valid on every open interval on which the integrand
is defined. For example, Formula 4 means that on every open interval not containing any real number in the
form kπ

2
where k is an odd integer, the function tan x is an antiderivative of the function sec2x.

The formulas can be proved directly by differentiating the functions on the right side. Below we give the
proofs for (1), (2) and (7). For (7), since the domain of the function x−1 is R \ {0}, we have to consider two
cases: x > 0 and x < 0.
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Proof for (1) Let r be a constant different from −1. On every open interval in which the function xr+1 is
defined (hence the function xr is also defined), we have

d
dx

xr+1

r + 1
=

1
r + 1

· d
dx

xr+1 Constant Multiple Rule for Differentiation

=
1

r + 1
· (r + 1) · xr+1−1 (General) Power Rule for Differentiation

= xr

Proof for (2) On R, we have

d
dx

(− cos x) = (−1) · d
dx

cos x Constant Multiple Rule for Differentiation

= (−1) · (− sin x) Derivative of cos

= sin x

Proof for (7) To prove the result, we consider the following two cases:

(Case x > 0)
d
dx

ln |x| =
d
dx

ln x Definition of |x|

=
1
x

Derivative of ln

(Case x < 0)
d
dx

ln |x| =
d
dx

ln(−x) Definition of |x|

=
1
−x
· d

dx
(−x) Chain Rule & Derivative of ln

=
1
−x
· (−1)

Constant Multiple Rule for Differentiation and
Power Rule for Differentiation

=
1
x

�

Example Perform the following integration:

(1)
∫

(x2 + sin x) dx

(2)
∫ (

1 − 1
x

)
dx

(3)
∫

(2 cos x + 3ex) dx

Solution

(1)
∫

(x2 + sin x) dx =

∫
x2 dx +

∫
sin x dx Term by Term Integration

=
x3

3
− cos x + C Integration Formulas (1) & (2)
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(2)
∫ (

1 − 1
x

)
dx =

∫
1 dx −

∫
1
x

dx Term by Term Integration

= x − ln |x| + C Integration Formulas (1) & (7)

(3)
∫

(2 cos x + 3ex) dx =

∫
2 cos x dx +

∫
3ex dx Term by Term Integration

= 2
∫

cos x dx + 3
∫

ex dx Constant Multiple for Integration

= 2 sin x + 3ex + C Integration Formulas (3) & (6)
�

Example Evaluate the following definite integrals:

(1)
∫ π

2

0
3 sin x dx

(2)
∫ 2

1

(
ex +

1
x

)
dx

Explanation In the first step of the solution, we apply rules and formulas for integration to find a primitive for the
given integrand (on the closed interval determined by the limits of integration) together with the Fundamental
Theorem of Calculus (Version 2).

Solution

(1)
∫ π

2

0
3 sin x dx =

[
− 3 cos x

] π
2

0

Constant Multiple Rule, Integration Formula (2)
& Fundamental Theorem of Calculus

= −3 cos
π

2
− (−3 cos 0)

= 3

(2)
∫ 2

1

(
ex +

1
x

)
dx =

[
ex + ln |x|

]2

1

Integration Formulas (6) & (7)
& Fundamental Theorem of Calculus

= (e2 + ln 2) − (e + ln 1)

= e2 − e + ln 2
�

Example Find the area of the (combined) region that lies between the
x-axis and the graph of y = ex − 1 for −1 ≤ x ≤ 2.

Solution Note that for −1 ≤ x ≤ 0, the graph of y = ex − 1 is below the
x-axis and for 0 ≤ x ≤ 2, the graph is above the x-axis.

-1 2

y = ex − 1

Figure 10.1
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The required area A is

A =

∫ 0

−1
[0 − (ex − 1)] dx +

∫ 2

0
[(ex − 1) − 0] dx

=

∫ 0

−1
(1 − ex) dx +

∫ 2

0
(ex − 1) dx

=
[
x − ex

]0

−1
+

[
ex − x

]2

0

Term by Term Integration,
Integration Formulas (1) & (6)
& Fundamental Theorem of Calculus

= [(−1 + 0) − (−e−1 − 1)] + [(e2 − 2) − (1 − 0)]

= e2 + e−1 − 3 �

Exercise 10.1
1. Perform the following integration:

(a)
∫

3 sec2 x dx (b)
∫

(2ex + cos x) dx

(c)
∫ 2x + 3

x
dx (d)

∫ (
1 +

1
x

)2 dx

2. Evaluate the following definite integrals:

(a)
∫ π

3
0 2 sin x dx (b)

∫ 1
−1(2ex + sin x) dx

(c)
∫ −1
−4

(
ex +

1
x

)
dx (d)

∫ 2
1

2 − x
x

dx

3. Find the area of the (combined) region that

(a) lies between the x-axis and the graph of y = sin x for 0 ≤ x ≤ π;

(b) lies between the x-axis and the graph of y =
1
x

for 1
2
≤ x ≤ e;

(c) lies under the graphs of y = ex and e−x and above the x-axis for −1 ≤ x ≤ 2 .

10.2 Substitution Method

Up to this stage, we can do simple integration using formulas and simple rules. For more complicated ones, like∫
x ex2

dx, we have to use some techniques for integration. In general, different forms of the integrand requires
different techniques. In this section, we discuss a simple but important technique — the substitution method. It
is the technique in integration that corresponds to the chain rule in differentiation.

Let y = F(u) be a function of u and let u = g(x) be a function of x. Then y can be considered as a function
of x by taking the composition of F with g:

y = F
(
g(x)

)
.

Suppose that the function g is differentiable on an open interval I and that the function F is differentiable on
an open interval containing the image of I under g. Then by the Chain Rule, the composition function F ◦ g is
differentiable on I and we have

d
dx

F
(
g(x)

)
=

dy
dx

Definition

=
dy
du
· du

dx
Chain Rule

= F′(u) · g′(x).
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Writing everything in terms of x, we get

d
dx

F
(
g(x)

)
= F′

(
g(x)

) · g′(x)

This is the chain rule expressed in an alternative way. Since integration is the reverse process of differentiation,
we have (on the interval I) ∫

F′
(
g(x)

) · g′(x) dx = F
(
g(x)

)
+ C.

Denoting F′ = f , the above integration formula becomes
∫

f
(
g(x)

)
g′(x) dx = F

(
g(x)

)
+ C (10.2.1)

Example Find
∫

(x2 + 1)2 · 2x dx.

Explanation By choosing f and g suitably, the integrand can be written as f
(
g(x)

)
g′(x). To apply (10.2.1), we

can take any antiderivative for f .

Solution Put f (x) = x2 and g(x) = x2 + 1. Then we have

f
(
g(x)

)
= (x2 + 1)2 and g′(x) = 2x. (10.2.2)

A primitive F for f is given by

F(x) =
1
3

x3.

From these we get
∫

(x2 + 1)2 · 2x dx =

∫
f
(
g(x)

)
g′(x) dx By (10.2.2)

= F
(
g(x)

)
+ C By (10.2.1)

= F(x2 + 1) + C Definition of g

=
1
3

(x2 + 1)3 + C Definition of F
�

Remark In the given integral, the integrand is deliberately written as (x2 + 1)2 · 2x. Usually, the integral is
written as

∫
2x (x2 + 1)2 dx.

In order to use (10.2.1), we have to choose two functions f and g suitably. Below we describe a more
convenient way: change of variable (or substitution) — we only need to choose a suitable function g.

In (10.2.1), putting u = g(x) and using du = g′(x) dx (see the explanation below), we get
∫

f
(
g(x)

)
g′(x) dx =

∫
f (u) du

= F(u) + C.

Explanation The notations du and dx are called differentials. They are related by the fact that if ∆x is small,

then
∆u
∆x

is approximately equal to g′(x), that is,

∆u ≈ g′(x)∆x.
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In the limiting situation, we have du = g′(x) dx.

Alternative procedure for the above example Put u = x2 + 1. Then we have du
dx

= 2x from which we get

du = 2x dx. (10.2.3)

Therefore, we have
∫

(x2 + 1)2 · 2x dx =

∫
u2 du Substitution and (10.2.3)

=
u3

3
+ C Integration Formula (1)

=
(x2 + 1)3

3
+ C Back substitution

�

FAQ Do we get the same answer if we expand the integrand first?

Answer If we expand the integrand and then integrate term by term, we get
∫

(x2 + 1)2 · 2x dx =

∫
2x(x4 + 2x2 + 1) dx

=

∫
(2x5 + 4x3 + 2x) dx

=
1
3

x6 + x4 + x2 + C.

The result obtained by the substitution method is

1
3

(x2 + 1)3 + C =
1
3

(x6 + 3x4 + 3x2 + 1) + C

=
1
3

x6 + x4 + x2 +
1
3

+ C.

Although these two answers “look different”, they represent the same family of functions. �

Remark If we change the integration to be
∫ √

x2 + 1 · 2x dx,

we can still use the substitution method but not the method by expansion.

Steps for the Substitution Method

(1) Define a new variable u = g(x), where g(x) is chosen in such a way that g′(x) “is a factor” of the integrand
and that when written in terms of u, the integrand is simpler than when written in terms of x.

(2) Transform the integral with respect to x into an integral with respect to u by replacing g(x) everywhere
by u and g′(x) dx by du.

(3) Integrate the resulting function of u.

(4) Substitute back u = g(x) to express the result in terms of x.
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Example Find
∫

ln x
x

dx.

Explanation After choosing u = g(x), we have du
dx

= g′(x) which yields du = g′(x) dx. Usually, the intermediate
step is omitted. In the solution below, in the first equality in the equation array, we just rewrite the integrand so
that substitution can be applied. Usually, this step is done in the head.

Solution Put u = ln x. Then we have du =
1
x

dx. From these we get

∫
ln x

x
dx =

∫
ln x · 1

x
dx

=

∫
u du Substitution

=
u2

2
+ C Integration Formula (1)

=
1
2

(ln x)2 + C Back substitution
�

Remark Instead of writing down the substitution u explicitly, some authors use the following alternative steps:
∫

ln x
x

dx =

∫
ln x d(ln x)

=
(ln x)2

2
+ C.

Example Find
∫

x2ex3
dx.

Explanation If we choose g(x) = x3. Then we have g′(x) = 3x2. Although the factor 3 doesn’t appear in the
integrand, we can create it by writing 1 = 3 · 1

3
.

Solution Put u = x3. Then we have du = 3x2 dx. From these we get
∫

x2ex3
dx =

∫
1
3

ex3 · 3x2 dx

=

∫
1
3

eu du Substitution

=
1
3

eu + C
Constant Multiple Rule and
Integration Formula (6)

=
1
3

ex3
+ C Back substitution

�

Example Find
∫

sin(2x − 3) dx.

Explanation In order to apply the substitution method, the integrands should be a product of two factors (see
(10.2.1). Note that sin(2x − 3) can be written as sin(2x − 3) · 1. Moreover, the derivative of (2x − 3) is 2 which
is a multiple of 1.
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Solution Put u = 2x − 3. Then we have du = 2 dx. From these we get
∫

sin(2x − 3) dx =

∫
1
2

sin(2x − 3) · 2 dx

=

∫
1
2

sin u du Substitution

=
1
2
· (− cos u)

Constant Multiple Rule and
Integration Formula (2)

= −1
2

cos(2x − 3) + C Back substitution
�

The following rule can be obtained using the method for the above example.

Linear Change of Variable Rule Suppose that
∫

f (x) dx = F(x) + C, α < x < β. Then for every constants a

and b with a , 0, we have
∫

f (ax + b) dx =
1
a

F(ax + b) + C, α − b
a

< x < β − b
a

Proof The given equality means that F′(x) = f (x) for all x ∈ (α, β). From this we get

d
dx

(
1
a

F(ax + b)
)

=
1
a
· d

dx
F(ax + b) Constant Multiple Rule

=
1
a
· F′(ax + b) · d

dx
(ax + b) Chain Rule

=
1
a
· F′(ax + b) · a Derivative of Polynomial

= F′(ax + b)

= f (ax + b) for α < ax + b < β.

Note that α < ax + b < β is the same as α − b
a

< x < β − b
a

. Hence the required result follows. �

In the substitution method, most authors use u to be the new variable. Thus the method is usually called
u-substitution.

A Guide for u-substitution Treat the integrand as a product of two functions of x. Choose u to be an expression
appearing in one of the two functions such that du

dx
is the other function or a multiple of the other function. If

such an expression can be found, then the integral can be written as
∫

f (u) du using substitution.

Remark The examples given in this section are chosen so that suitable u-substitutions can be used. If we change
the integrands slightly, there may not be any suitable u-substitution. For example, we can use u-substitution to
find

∫
x ex2

dx. However, if we change the integral to be
∫

x ex dx, we can’t use u-substitution. Instead, we can
use a technique called Integration by Parts. It is the technique in integration that corresponds to the Product
Rule in differentiation. A brief introduction to this technique will be given in a later section.

Integration is difficult. In fact, there are functions that can’t be integrated. For example, we can’t express∫
ex2

dx using functions that we have discussed.
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Substitution Method for Definite Integrals

To find definite integrals using u-substitution, one method is to find antiderivatives for the integrands and then
apply the Fundamental Theorem of Calculus. Alternatively, we may change of the definite integrals to ones in
terms of u by changing the limits of integration accordingly:

∫ b

a
f
(
g(x)

)
g′(x) dx =

∫ g(b)

g(a)
f (u) du (10.2.4)

where g is a continuous function on [a, b] and f is a function defined and continuous on an open interval I
containing the image of [a, b] under g.

Proof Let F be a function such that F′ = f on I. Note that F ◦ g is a primitive for ( f ◦ g) · g′ on [a, b]. Thus
we have

∫ b

a
f
(
g(x)

)
g′(x) dx =

[
F
(
g(x)

)]b

a
Fundamental Theorem of Calculus

= F
(
g(b)

) − F
(
g(a)

)

=
[
F(u)

]g(b)

g(a)

=

∫ g(b)

g(a)
f (u) du Fundamental Theorem of Calculus

�

Example Evaluate
∫ 4

0
x
√

x2 + 9 dx.

Solution 1 Put u = x2 + 9. Then we have du = 2x dx. From these we get
∫

x
√

x2 + 9 dx =

∫
1
2

√
x2 + 9 · 2x dx

=
1
2

∫
u

1
2 du

=
1
2
· u

3
2

3
2

+ C

=
1
3

(x2 + 9)
3
2 + C.

By the Fundamental Theorem of Calculus, we have

∫ 4

0
x
√

x2 + 9 dx =

[
1
3

(x2 + 9)
3
2

]4

0

=
1
3
· 125 − 1

3
· 27

=
98
3

Solution 2 Put u = x2 + 9. Then we have du = 2x dx.

Note that when x = 4, u = 25 and when x = 0, u = 9.
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Therefore by (10.2.4), we have

∫ 4

0
x
√

x2 + 9 dx =

∫ 4

0

1
2

√
x2 + 9 · 2x dx

=
1
2

∫ 25

9
u

1
2 du

=
1
2


u

3
2

3
2


25

9

=
1
2

(
2
3
· 125 − 2

3
· 27

)

=
98
3 �

Remark Instead of writing down the substitution u explicitly, some authors use the following alternative steps:

∫ 4

0
x
√

x2 + 9 dx =

∫ 4

0

√
x2 + 9

d(x2 + 9)
2

=
1
2


(x2 + 9)

3
2

3
2


4

0
...

In the rest of this section, we will apply (10.2.4) to find definite integrals using u-substitution.

Example Evaluate
∫ 1

0
(x + 1)ex2+2x dx.

Solution Put u = x2 + 2x. Then we have du = (2x + 2) dx.

Note that when x = 1, u = 3 and when x = 0, u = 0.

Therefore we have ∫ 1

0
(x + 1)ex2+2x dx =

∫ 1

0

1
2

ex2+2x · (2x + 2) dx

=

∫ 3

0

1
2

eu du

=

[
1
2

eu
]3

0

=
1
2

(e3 − 1)
�

Example Evaluate
∫ π

2

0
sin x cos x dx.

Solution Put u = sin x. Then we have du = cos x dx.

Note that when x =
π

2
, u = 1 and when x = 0, u = 0.
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Therefore we have ∫ π
2

0
sin x cos x dx =

∫ 1
0 u du

=

[
u2

2

]1

0

=
1
2
. �

Remark We can also use the u-substitution u = cos x.

Example Find the area of the (combined) region that lies between the x-axis and the graph of y = xe−x2
for

−1 ≤ x ≤ 2.

Solution Note that for −1 ≤ x ≤ 0, the graph of y = xe−x2
is below the

x-axis and for 0 ≤ x ≤ 2, the graph is above the x-axis.

The required area A is

A =

∫ 0

−1
(0 − xe−x2

) dx +

∫ 2

0
(xe−x2 − 0) dx.

-1 2

y = xe−x2

Figure 10.2Put u = −x2. Then we have du = −2x dx.

Note that when x = −1, u = −1; when x = 0, u = 0 and when x = 2, u = −4.

Therefore we have

A =

∫ 0

−1

1
2

e−x2 · (−2x) dx +

∫ 2

0
−1

2
e−x2 · (−2x) dx

=

∫ 0

−1

1
2

eu du +

∫ −4

0
−1

2
eu du

=

[
1
2

eu
]0

−1
+

[
−1

2
eu

]−4

0

=

(
1
2
− 1

2e

)
+

(
− 1

2e4 +
1
2

)

= 1 − 1
2e
− 1

2e4 �

Exercise 10.2

1. Perform the following integration:

(a)
∫

2x(x2 + 1)9 dx (b)
∫

x4
√

x5 + 6 dx (c)
∫

x sin x2 dx

(d)
∫

sin x cos2 x dx (e)
∫

2xex2
dx (f)

∫
ex sec2(ex) dx

(g)
∫

xe−x2+1 dx (h)
∫

x2ex3−1 dx (i)
∫ x

x2 + 1
dx

(j)
∫ sin 1

x

x2 dx (k)
∫

(x + 1)(x2 + 2x + 3)7 dx (l)
∫ x3 + x

(x4 + 2x2 + 3)11 dx

(m)
∫

(ex − 3x)4(ex − 3) dx (n)
∫ e

√
x

√
x

dx (o)
∫ ln(x + 1)

x + 1
dx

(p)
∫ 1

2x + 7
dx (q)

∫
(x + 1)15 dx (r)

∫ x√
x + 1

dx

(s)
∫

x(x + 1)15 dx (t)
∫ (x2 − 1)ex+ 1

x

x2 dx
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2. Evaluate the following definite integrals:

(a)
∫ 1

0 x(x2 + 1)5 dx (b)
∫ 1

0 xex2+1 dx

(c)
∫ 1

0 x2 cos x3 dx (d)
∫ 2

0
1

2x + 3
dx

(e)
∫ 0
−1 ex+1 dx (f)

∫ eπ

1
sin(ln x)

x
dx

(g)
∫ 1
−1(x − 1)(x2 − 2x)4 dx (h)

∫ e2

e
1

x ln x
dx

(i)
∫ 1

0 x(1 − x)7 dx (j)
∫ 8

0
x√

x + 1
dx

3. Find the area of the region that lies between

(a) the x-axis and the graph of y = x sin x2 for 0 ≤ x ≤ √π;
(b) the graphs of y = x and y = xex2

for 0 ≤ x ≤ 1.

10.3 Integration of Rational Functions

Recall that rational functions are functions that can be written in the form f (x)
g(x)

, where f (x) and g(x) are poly-
nomials. If the degree of f (x) is greater than or equal to that of g(x), then by long division, we can find a
polynomial p(x) and a polynomial r(x) with degree less than that of g(x) such that

f (x)
g(x)

= p(x) +
r(x)
g(x)

for all x with g(x) , 0.

Since polynomial functions can be integrated easily, to integrate f (x)
g(x)

, it suffices to know how to integrate r(x)
g(x)

.

For the case where the degree of g(x) is 1, the rational function r(x)
g(x)

takes the form A
ax + b

(where a , 0)
which can be integrated as follows:

∫
A

ax + b
dx = A

∫
1

ax + b
dx Constant Multiple Rule

= A · 1
a
· ln |ax + b| + C

Integration Formula (7) &
Linear Change of Variable Rule

Below we discuss how to integrate rational functions where the degree of the denominator is 2 and the
degree of the numerator is less than 2. Readers who want to know how to integrate rational functions where the
degree of the denominator is greater than 2 may consult any (one-variable) calculus book.

To integrate rational functions in the form

Ax + B
ax2 + bx + c

where A, B, a, b, c are constants and a , 0, we consider the cases where the discriminant b2 − 4ac is positive,
zero or negative:

(Case 1) b2 − 4ac > 0

In this case, the denominator can be factorized as

ax2 + bx + c = a(x − x1)(x − x2)
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where x1 and x2 are the distinct real numbers. Moreover, there exists constants α and β such that

Ax + B
ax2 + bx + c

=
α

x − x1
+

β

x − x2
(10.3.1)

for all x ∈ R \ {x1, x2}. Note that the right-side can be integrated easily.

Terminology Fractions in the form
α

(x − x1)n ,

where n is a positive integer, are called partial fractions. The sum in (10.3.1) is called the partial-fraction
decomposition of the rational function on the left-side.

Example Find the partial-fraction decomposition of
x

x2 − 2x − 3
.

Solution Note that x2 − 2x − 3 = (x − 3)(x + 1). The partial-fraction decomposition of the given rational
function takes the form

x
x2 − 2x − 3

=
α

x − 3
+

β

x + 1
. (10.3.2)

Multiplying both sides by (x − 3)(x + 1), we get

x = α(x + 1) + β(x − 3). (10.3.3)

To find the constants α and β, we can use the compare coefficient method or the substitution method.

(Compare Coefficient Method) From (10.3.3), we get

x = (α + β)x + (α − 3β).

Comparing the coefficients of the x term and the constant term, we get

1 = α + β and 0 = α − 3β

respectively. Solving, we get α =
3
4

and β =
1
4

.

(Substitution Method) In (10.3.3), putting x = −1 and x = 3, we get

−1 = −4β and 3 = 4α

respectively. Thus we have α =
3
4

and β =
1
4

.

Explanation α and β are constants such that (10.3.2) holds for all x ∈ R \ {−1, 3} which (by
continuity of polynomial functions) implies that (10.3.3) holds for all x ∈ R. To find α and β, we
substitute x = 3 and x = −1 respectively. In fact, we can substitute any two values of x to get a
system of two linear equations with knowns α and β.

Therefore, we have the following partial-fraction decomposition:

x
x2 − 2x − 3

=

3
4

x − 3
+

1
4

x + 1
.

�
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Example Find
∫

x + 1
x2 − 2x − 3

dx.

Solution From the result of the preceding example, we get
∫

x + 1
x2 − 2x − 3

dx =

∫ (
3
4
· 1

x − 3
+

1
4
· 1

x + 1

)
dx

=
3
4

∫
1

x − 3
dx +

1
4

∫
1

x + 1
dx

=
3
4

ln |x − 3| + 1
4

ln |x + 1| + C
�

(Case 2) b2 − 4ac = 0

In this case, the denominator can be factorized as

ax2 + bx + c = a(x − x1)2

where x1 is a real number. Moreover, there exists constants α and β such that

Ax + B
ax2 + bx + c

=
α

x − x1
+

β

(x − x1)2 (10.3.4)

for all x ∈ R \ {x1}. Note that the right-side can be integrated easily.

Terminology The sum in (10.3.4) is called the partial-fraction decomposition of the rational function
on the left-side.

Example Find the partial-fraction decomposition of
2x + 3

x2 − 2x + 1
.

Solution Note that x2 − 2x + 1 = (x − 1)2. The partial-fraction decomposition of the given rational
function takes the form

2x + 3
x2 − 2x + 1

=
α

x − 1
+

β

(x − 1)2 . (10.3.5)

Multiplying both sides by (x − 1)2, we get

2x + 3 = α(x − 1) + β. (10.3.6)

To find the constants α and β, we can use any one of the following two methods:

(Compare Coefficient Method) From (10.3.6), we get

2x + 3 = αx + (β − α).

Comparing the coefficients of the x term and the constant term, we get

2 = α and 3 = β − α

respectively, which yields β = 5.
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(Substitution Method) In (10.3.6), putting x = 1 and x = 0, we get

5 = β and 3 = −α + β

respectively, which yields α = 2.

Therefore, we have the following partial-fraction decomposition:

2x + 3
x2 − 2x + 1

=
2

x − 1
+

5
(x − 1)2 .

�

Example Find
∫

2x + 3
x2 − 2x + 1

dx.

Solution From the result of the preceding example, we get
∫

2x + 3
x2 − 2x + 1

dx =

∫ (
2

x − 1
+

5
(x − 1)2

)
dx

= 2
∫

1
x − 1

dx + 5
∫

1
(x − 1)2 dx

= 2 ln |x − 1| + 5
∫

(x − 1)−2 dx

= 2 ln |x − 1| − 5(x − 1)−1 + C
�

(Case 3) b2 − 4ac < 0

In this case, the denominator can be written as

ax2 + bx + c = a
(
(x + s)2 + t2

)

where s and t are real numbers and t , 0. Before discussing how to find
∫

Ax + B
ax2 + bx + c

dx,

in general, we consider the special cases where A = 0 or where Ax + B is a multiple of the derivative of
ax2 + bx + c.

(Subcase 3a) A = 0

In this case, we have
∫

Ax + B
ax2 + bx + c

dx =

∫
B

a
(
(x + s)2 + t2) dx

=
B
a

∫
1

t2
[(

1
t x + s

t

)2
+ 1

] dx

=
B
a
· 1

t2 ·
1
1
t

tan−1
(

1
t x + s

t

)
+ C

Integration Formula 5 &
Linear Change of Variable Rule

=
B
at

tan−1 x + s
t

+ C
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Example Find
∫

1
x2 + 4x + 13

dx.

Explanation In the solution below, instead of applying the formula obtained above, we use a
suitable u-substitution. The idea is to choose u so that (x + 2)2 + 9 = (3u)2 + 32 (note that

1
(3u)2 + 32 =

1
9
· 1

u2 + 1
can be integrated easily).

Solution Note that x2 + 4x + 5 = (x + 2)2 + 9. Thus we have
∫

1
x2 + 4x + 13

dx =

∫
1

(x + 2)2 + 9
dx

=

∫
1

(3u)2 + 32 · 3 du
Put x + 2 = 3u.
Thus dx = 3 du.

=
1
3

∫
1

u2 + 1
du

=
1
3
· tan−1 u + C

=
1
3

tan−1 x + 2
3

+ C
�

(Subcase 3b) Ax + B = k(2ax + b) for some constant k

In this case, we have ∫
Ax + B

ax2 + bx + c
dx =

∫
k(2ax + b)

ax2 + bx + c
dx

which can be integrated using substitution u = ax2 + bx + c.

Example Find
∫

x + 1
2x2 + 4x + 5

dx.

Solution Put u = 2x2 + 4x + 5. Then we have du = (4x + 4) dx = 4(x + 1) dx. From these we get
∫

x + 1
2x2 + 4x + 5

dx =

∫
1
4
· 1

2x2 + 4x + 5
· 4(x + 1) dx

=
1
4

∫
1
u

du

=
1
4
· ln |u| + C

=
1
4

ln(2x2 + 4x + 5) + C
�

Remark In the last step, the absolute value sign is omitted. This is because 2x2 + 4x + 5 is always
positive.

(Case 3 in general) To integrate Ax + B
ax2 + bx + c

where b2 − 4ac < 0, we rewrite the numerator as a sum of two
terms—the first one is a multiple of the derivative of the denominator and the second one is a constant.

Example Find
∫

2x + 3
x2 + 4x + 13

dx.
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Solution Note that d
dx

(x2 + 4x + 13) = 2x + 4. Writing 2x + 3 = (2x + 4) − 1, we have
∫

2x + 3
x2 + 4x + 13

dx =

∫
2x + 4

x2 + 4x + 13
dx −

∫
1

x2 + 4x + 13
dx.

For the first integral, we put u = x2 + 4x + 13 which gives du = (2x + 4) dx and so we have
∫

2x + 4
x2 + 4x + 13

dx =

∫
1
u

du

= ln |u| + c

= ln(x2 + 4x + 13) + C.

For the second integral, by a previous result, we have
∫

1
x2 + 4x + 13

dx =
1
3

tan−1 x + 2
3

+ C.

Combining the two results, we get
∫

2x + 3
x2 + 4x + 13

dx = ln(x2 + 4x + 13) − 1
3

tan−1 x + 2
3

+ C.

�

Remark If Ax + B = k(2ax + b), the method discussed in Subcase 3b works also for the cases where b2 − 4ac
is positive or zero.

Example Find
∫

x − 1
x2 − 2x − 3

dx.

Solution

(Method 1) Put u = x2 − 2x − 3. Then we have du = (2x − 2) dx = 2(x − 1) dx. From these we get
∫

x − 1
x2 − 2x − 3

dx =

∫
1
2
· 2(x − 1)

x2 − 2x − 3
dx

=
1
2

∫
1
u

du

=
1
2
· ln |u| + C

=
1
2

ln |x2 − 2x − 3| + C

(Method 2) Note that x2 − 2x − 3 = (x − 3)(x + 1). The partial-fraction decomposition of the integrand takes the
form

x − 1
x2 − 2x − 3

=
α

x − 3
+

β

x + 1
.

Multiplying both sides by (x − 3)(x + 1), we get

x − 1 = α(x + 1) + β(x − 3).

Putting x = −1 and x = 3, we get

−2 = −4β and 2 = 4α
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respectively which yields α = β =
1
2

. Therefore we have

∫
x − 1

x2 − 2x − 3
dx =

∫ (
1
2
· 1

x − 3
+

1
2
· 1

x + 1

)
dx

=
1
2

(
ln |x − 3| + ln |x + 1|

)
+ C

�

Remark Since ln |x2 − 2x− 3| = ln
(|x− 3| · |x + 1|) = ln |x− 3|+ ln |x− 1|, the answers obtained in the above two

solutions are the same.

10.4 Integration by Parts

The technique in integration that corresponds to the product rule in differentiation is called integration by parts.
In this section, we give a brief discussion on this technique. Readers who want to know how to apply this
technique to more examples may consult (one variable) calculus books.

Let f and g be functions that are differentiable on an open interval (a, b). By the product rule, we have

d
dx

(
f (x)g(x)

)
= f ′(x)g(x) + f (x)g′(x), a < x < b

which, written in terms of integration, becomes
∫

f ′(x)g(x) dx +

∫
f (x)g′(x) dx = f (x)g(x), a < x < b.

If one of the two integrals on the left side is easy to find, then we can find the other one. By symmetry, we may
assume that the first integral is easy to find, then in this case, we can find the second integral by the following:

∫
f (x)g′(x) dx = f (x)g(x) −

∫
f ′(x)g(x) dx (10.4.1)

Remark For simplicity, in the above formula, the interval under consideration is omitted.

Below, we give an example to illustrate how to apply (10.4.1).

Example Find
∫

x ex dx.

Explanation In the calculation below, note that
∫

f ′(x)g(x) dx =
∫

ex dx is easy to find.

Solution Put f (x) = x and put g(x) = ex. Then we have f ′(x) = 1 and g′(x) = ex. From these we get
∫

x ex dx =

∫
f (x)g′(x) dx Substitution

= f (x)g(x) −
∫

f ′(x)g(x) dx By (10.4.1)

= x ex −
∫

ex dx Back substitution

= x ex − ex + C
�
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Remark There are infinitely many way to choose g(x); we can add any constant to ex. If we take g(x) = ex + 1,
then we get ∫

x ex dx =

∫
f (x)g′(x) dx

= f (x)g(x) −
∫

f ′(x)g(x) dx

= x (ex + 1) −
∫

(ex + 1) dx

= x (ex + 1) − (ex + x) + C

= x ex − ex + C

In (10.4.1), by putting u = f (x) and v = g(x) so that du = f ′(x) dx and dv = g′(x) dx, we get
∫

u dv = uv −
∫

v du (10.4.2)

In applying (10.4.2), we have to choose suitable u and dv. From the chosen dv, we have to find v. This is
done by integration. For example, suppose that dv = ex dx, which means that

dv
dx

= ex.

Integrating, we get
v = ex + C.

To apply the formula, we only need to take a suitable v (see the solution and the remark of the preceding
example). Below we redo the example using integration by part, that is, using (10.4.2).

Example Find
∫

x ex dx.

Solution Put u = x and dv = ex dx. Then we have du = dx and we can take v = ex. From these we get
∫

x ex dx =

∫
u dv Substitution

= uv −
∫

v du Integration by parts

= x ex −
∫

ex dx Back substitution

= x ex − ex + C
�

A Guide for Integration by Parts Treat the integrand as a product of two functions. Choose u to be one of
the two functions such that

• the other function can be integrated easily—choose dv = (the other function) dx;

• the new integral
∫

v du is easier to find than the original integral
∫

u dv.

Example Find
∫

x cos x dx.

Explanation The integrand is a product of two functions. There are two options for u and dv.
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• Put u = x and dv = cos x dx. Then we have du = dx and we can take v = sin x. Note that
∫

v du =∫
sin x dx is easy to find (the method works).

• Put u = cos x and dv = x dx. Then we have du = − sin x dx and we can take v =
1
2

x2. Note that
∫

v du =
∫
−1

2
x2 sin x dx which is even more complicated than the original integral.

Solution Put u = x and dv = cos x dx. Then we have du = dx and we can take v = sin x. From these we get
∫

x cos x dx = x sin x −
∫

sin x dx Integration by parts

= x sin x + cos x + C �

Example Find
∫

ln x dx.

Explanation The integrand can be written as ln x · 1, a product of two functions. To choose u and dv, there is
only one plausible way, namely u = ln x and dv = dx. Readers may try to see what happens if we choose u = 1
and dv = ln x dx.

Solution Put u = ln x and dv = dx. Then we have du =
1
x

dx and we can take v = x. From these we get
∫

ln x dx = ln x · x −
∫

x · 1
x

dx Integration by parts

= x ln x −
∫

1 dx

= x ln x − x + C �

10.5 More Applications of Definite Integrals

In economics, we have the concepts of consumers’ surplus and producers’ surplus. These two concepts are
defined in terms of definite integrals.

Consumers’ and Producers’ Surplus

Let p = D(q) and p = S (q) be respectively the demand and supply equations for a certain product. The
quantity q0 at which D(q) = S (q) is called the equilibrium quantity and the corresponding price p0 is called the
equilibrium price.

q0

p0

p = D(q)
demand curve

p = S (q)

supply curve

Figure 10.3
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Note that (q0, p0) is the intersection point of the demand curve and the supply curve.
The consumers’ surplus (denoted by CS ) and producers’ surplus (denoted by PS ) under market equilibrium

are defined as follows:

CS =

∫ q0

0
[D(q) − p0] dq, PS =

∫ q0

0
[p0 − S (q)] dq.

CS

Figure 10.4(a)

PS

Figure 10.4(b)

Example Find the consumers’ surplus and producers’ surplus if the demand and supply equations are

p = D(q) = 20 − q
20
, p = S (q) = 2 +

q2

5000
.

Solution First we find the intersection point (q0, p0) of the demand curve p = D(q) and the supply curve
p = S (q). Solving D(q) = S (q) (noting that q > 0)

20 − q
20

= 2 +
q2

5000
(q > 0)

q2

5000
+

q
20
− 18 = 0 (q > 0)

q2 + 250q − 90000 = 0 (q > 0)

(q − 200)(q + 450) = 0 (q > 0)

we get q0 = 200 and so p0 = D(200) = 10.

The consumers’ surplus is

CS =

∫ 200

0
[D(q) − 10] dq

=

∫ 200

0

(
20 − q

20
− 10

)
dq

=

∫ 200

0

(
10 − q

20

)
dq

=

[
10q − q2

40

]200

0

= 1000.
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The producers’ surplus is

PS =

∫ 200

0
[10 − S (q)] dq

=

∫ 200

0

[
10 −

(
2 +

q2

5000

)]
dq

=

∫ 200

0

(
8 − q2

5000

)
dq

=

[
8q − q3

15000

]200

0

=
3200

3
.

�

Probability

To consider probabilities, the simplest method is to count, that is, to do addition. This works for the case
where the sample space is finite. However, if the sample space is infinite, we can’t count. To define probabilities,
we use definite integration which can be considered as a generalization of addition. Below we give a very brief
introduction to probabilities of events for continuous random variables.

Definition A variable whose values depend on the outcome of a random process is called a random variable.

Example

(1) Suppose a die is rolled and X1 is the number that turns up. Then X1 is a random variable with values in
{1, 2, 3, 4, 5, 6}.

(2) The life (in months) of a certain computer part is a random variable X2 with values in [0,∞).

Note that the values that X1 can take are discrete whereas X2 can take any value in the interval [0,∞). For this
we say that X1 is a discrete random variable and X2 a continuous random variable.

Definition Let X be a discrete random variable with values in {x1, x2, . . . , xn}. A probability function of X is a
function f with domain {x1, x2, . . . , xn} such that

(1) 0 ≤ f (xi) for all i = 1, . . . , n;

(2) f (x1) + · · · + f (xn) = 1.

Example Suppose a die is rolled and X is the number that turns up. If the die is fair, then the probability of
getting any one of the six numbers is 1

6
. Thus we have the following probability function of X:

f (i) =
1
6

for 1 ≤ i ≤ 6.

More generally, if the die is not fair, then the probability function g of X is given by

g(i) = wi for 1 ≤ i ≤ 6,

where 0 < wi < 1 and w1 + · · · + w6 = 1.
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From the probability function g, we can find (for example) the probability of getting an odd number:

P(X is odd) = w1 + w3 + w5 =
∑

i is odd

g(i),

where (X is odd) denotes the event that the number X that turns up is odd and P(X is odd) denotes the probability
of the event (X is odd).

Probabilities of Events for Discrete Random Variables Suppose that X is a discrete random variable with
values in the set {x1, . . . , xn} and that f is a probability function of X.

• An event for X is a subset of {x1, . . . , xn}.
• The probability of an event E, denoted by P(E), is the number given by

P(E) =
∑

xi∈E

f (xi).

For continuous random variable, instead of taking sums, we consider integration.

Definition Let X be a continuous random variable with values in [a,∞). A probability function of X is a
function f with domain [a,∞) such that

(1) 0 ≤ f (x) for all x ∈ [a,∞);

(2)
∫ ∞

a
f (x) dx = 1.

Remark
∫ ∞

a
f (x) dx is called an improper integral and is defined by

∫ ∞

a
f (x) dx = lim

R→∞

∫ R

a
f (x) dx

provided that the limit exists. For example,

∫ ∞

1

1
x2 dx = lim

R→∞

∫ R

1
x−2 dx

= lim
R→∞

[
x−1

−1

]R

1

= lim
R→∞

(
−R−1 − (−1)

)

= 1.

Probabilities of Events for Continuous Random Variables Suppose that X is a continuous random variable
with values in the interval [a,∞) and that f is a probability function of X.

• An event for X is a “nice” subset of [a,∞), where “nice” means that the integral of f over that subset
“can be found”. In most cases, we consider events that are intervals contained in [a,∞); such events are
represented by (α ≤ X ≤ β), where a ≤ α < β ≤ ∞.
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• The probability of an event (α < X < β), denoted by P(α < X < β), is the number given by

P(α < X < β) =

∫ β

α
f (x) dx.

Remark It doesn’t matter whether we include the endpoints α and β. For a continuous random variable
X, the probability that X equals a specific value is 0.

Example The life (in months) of a certain computer part has probability function given by

f (x) =
1

18
e−

x
18 , x ∈ [0,∞).

Find the probability that a randomly selected component will last

(1) between 1 year and 11
2 years;

(2) at most 6 months;

(3) more than 2 years.

Explanation In this example, the random variable X is the life of a computer part. Note that X has values in
[0,∞). The given function f is a probability function for X. This can be checked as follows:

∫ ∞

0
f (x) dx =

∫ ∞

0

1
18

e−
x

18 dx

= lim
R→∞

∫ R

0

1
18

e−
x

18 dx

= lim
R→∞


1

18
· 1
−1
18

e−
x

18


R

0

= lim
R→∞

(
−e−

R
18 + 1

)

= 1.

Solution

(1) The given event is (12 < X < 18). The probability of the event is

P(12 < X < 18) =

∫ 18

12

1
18

e−
x

18 dx

=
[
−e−

x
18
]18

12

= −e−1 + e−
2
3

≈ 0.146.

(2) The given event is (X ≤ 6). The probability of the event is the same as that of (0 < X < 6).

P(0 < X < 6) =

∫ 6

0

1
18

e−
x

18 dx

=
[
−e−

x
18
]6

0

= 1 − e−
1
3

≈ 0.283.
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(3) The given event is (X > 24), that is, (24 < X < ∞). The probability of the event is

P(24 < X < ∞) =

∫ ∞

24

1
18

e−
x

18 dx

= lim
R→∞

∫ R

24

1
18

e−
x

18 dx

= lim
R→∞

[
−e−

x
18
]R

24

= lim
R→∞

(
e−

4
3 − e−

R
18

)

= e−
4
3

≈ 0.264.
�
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Appendix A

Answers

Exercise 0.1
1. (a) x3 (b)

y2z3

x
(c)

y12

x8 (d)
y2

8x4

Exercise 0.2
1. (a) 4x2 + 12x + 9 (b) 9x2 − 6xy + y2 (c) x2 − 9y2

(d) x2 + 7xy + 12y2 (e) 4x − 12
√

x + 9 (f) x − 25

2. (a) (x − 3)(x − 4) (b) (x + 3)(x − 2) (c) (x + 4)2

(d) (3x + 1)(3x + 2) (e) (3x − 1)2 (f) 5(x + 1)(x − 1)
(g) 3(x − 3)2 (h) 2(x − 2)(x − 4)

3. (a)
(x + 2)
(x − 4)

(b)
−(x + 4)
(x + 2)

(c)
1

2(x + 1)2 (d)
−1

x(x + h)

Exercise 0.3
1. (a)

6
5

(b) 2 (c)
b2

a − b
(d)

abc
b − a

Exercise 0.4
1. (a) 0, 1 (b) 1,

−2
3

(c) 3,
5
4

(d) −√2 (e) no solution (f) 0,
7 ± √37

2
2. −2, 6

3. 14

Exercise 0.5
1. (a) (x − 1)(x − 3)(x + 4) (b) (x − 1)(x − 3)(2x + 1)

(c) (x − 1)2(2x + 3) (d) (x − 1)(x2 − 4x + 7)

2. (a) −3
2
, 1, 5 (b) 1,

−1 ± √5
2

(c) 3

Exercise 0.6

1. (a) x ≤ 17
9

(b) x ≥ 6 − √3

2 − √3

(c) x > 1 (d) x < −3
2
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Exercise 0.7
1. (a) 3x + 2y = 0 (b) 2x − y − 11 = 0 (c) 3x + y − 7 = 0

(d) 2x − y + 8 = 0 (e) 3x − y + 1 = 0 (f) y + 1 = 0

Exercise 0.8
1. (a) 5 (b)

√
65 (c) 13 (d) 5

√
5

2. (a) r =
√

3 C = (0, 2) (b) r = 3 C = (−2, 1) (c) r =

√
3

2
C = (−1, 1

2 )

3. (a) 2 (b)
1√
2

(c)
2√
5

Exercise 0.9
1. (a) x-intercepts: (−6, 0), (2, 0), y-intercept: (0,−12), vertex: (−2,−16)

(b) x-intercepts: (3 ± √2, 0), y-intercept: (0,−7), vertex: (3, 2)

(c) no x-intercept, y-intercept: (0, 7), vertex: (−1
2 ,

13
2 )

Exercise 0.10
1. 8 cm × 6 cm

Exercise 1.1
1. (a) {2, 3, 5, 7}

(b) {2, 4, 6, 8, 10}
(c) {2}
(d) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 19}
(e) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18}
(f) {2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19}
(g) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19}
(h) {2}
(i) {2, 4, 6, 8, 10}
(j) {2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18}
(k) {1, 4, 6, 8, 9, 10}
(l) {12, 14, 15, 16, 18}

2. (a) False (b) False (c) True

Exercise 1.2
1. (a) {√2,−√2} (b) { √2} (c) ∅
2. (a) [3, 5] (b) [1, 9) (c) (1, 5)

(d) {5} (e) {1} (f) [3, 5) ∪ (5, 9)
(g) {5} (h) [1,∞) (i) {5}

Exercise 1.3
1. (a) x ≤ −7

5
(b) x < −29

3

(c) x > 2 (d) x ≤ −7
2

or x ≥ 5
11

(e) −1 < x < 3 (f) x <
3 − √41

4
or x >

3 +
√

41
4

(g) no solution (h) x ≤ −3
2

or x > 4

(i) −7 < x < 4
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2. (a) x(x + 5)(2x − 3) (b) (x − 1)(x + 1)(2x + 3)
(c) (x − 2)(x2 + x + 1) (d) x(x − 5)(x − 1)(x + 3)
(e) (x − 2)(x + 1)(x − 1)2 (f) (x − 1)2(x2 + x + 2)

3. (a) −3
2
< x <

9
5

or x > 4 (b) x ≤ 3

(c) x < −2 or 1 < x < 3 (d) −3 ≤ x ≤ 3
2

or x ≥ 2

(e) x > 3 (f) x ≤ −1

(g) x < −4 or −2 < x < 1 or x > 3 (h) −5
3
≤ x ≤ 3

2

Exercise 2.1
1. (a) −3

8
(b) − 6

65
(c)

a − 4
a2 + 2a + 5

(d)
√

a − 5
a + 4

(e)
a2 − 5
a4 + 4

(f)
a − 5
a2 + 4

− 4
5

2. (a)
1
2

(b)
2
3

(c)
3

4
√

2

(d) 1 − 1
a

+
√

a (e)
(a2 + 1)|a|

a2 + 2
3. (a) a2 + 2ab + b2 − 3a − 3b + 4 (b) −1 + h

(c) 2a − 3 + h

Exercise 2.2
1. (a) R (b) R \ {−6

5 } (c) R \ {−√5,
√

5}
(d) R \ {−1, 3} (e) ( 3

2 ,∞) (f) [−3,∞) \ { 12 }
(g) [−5

2 ,∞) \ {−1, 1} (h) (−∞,−5) ∪ (2,∞)

2. (a) [−5,∞) (b) [−4,∞) (c) R \ {0}
(d) R \ {3} (e) (0,∞) (f) (−∞,−1

5 ] ∪ (0,∞)
(g) (−∞,−1

4 ] ∪ (0,∞)

3. A(w) = 14w − w2, dom = (0, 14), range = (0, 49]

Exercise 2.3
1. x-intercept: (

√
2, 0), (−√2, 0), y-intercept:

(
0, 2√

3

)
, (0,− 2√

3

)

2. a = 1, b = 1, c = −6
3. (a) y-intercept: (0, 5), no x-intercept

4. (a) (2,−1),
(2

5 ,
11
5
)

(b) (2,−1),
(2

3 ,
5
3
)

(c) {(2, 1), (2,−1), (−2, 1), (−2,−1)}
5. a = ±√3

Exercise 2.4
1. (a)

1 2 3 4

-2

2

4

(b)

2 4 6 8 10

-10

-5

5
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(c)

-2 -1 1 2

-2

-1

1

2

3

(d)

-2-1 1 2 3

2

4

6

8

10

(e)

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3 (f)
-2 -1 1 2

-4

-3

-2

-1

(g)

-2 -1 1 2

-2

-1

1

2 (h)

1 2 3 4 5 6

-4

-3

-2

-1

1

2

(i)

-4 -3 -2 -1 1 2

-4

-3

-2

-1

1

2 (j)

-1 -0.5 0.5 1

0.2
0.4
0.6
0.8

1

(k)

0.5 1 1.5 2

1

2

3

4

2. (a)

-1.5 -1 -0.5 0.5 1 1.5

-2

-1.5

-1

-0.5

0.5

1

1.5

2 (b)

-2 -1 1 2 3

-2

-1

1

2

3

4

5

(c)

-2 -1 1 2

1

2

3

4

5

6 (d)

0.5 1 1.5 2

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1
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(e)

-1.5-1-0.5 0.5 1 1.5

-2

-1.5

-1

-0.5

0.5

1

1.5

2 (f)

-2 -1 1 2 3 4

-5

-4

-3

-2

-1

1

2

(g)

-2 -1 1 2

0.5
1

1.5
2

2.5
3

3.5
4 (h)

-1.5-1-0.5 0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

(i)

-1-0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

1.5 (j)

0.5 1 1.5 2 2.5

-1

-0.5

0.5

1

1.5

(k)
-1.5-1-0.5 0.5 1 1.5

-3

-2.5

-2

-1.5

-1

-0.5

0.5 (l)

-2-1.5-1-0.5 0.5 1 1.5

-3

-2

-1

1

3.
(1−√13

2 , −1−√13
6

)
,

(1+
√

13
2 , −1+

√
13

6
)

4. (a) 1 second

(b)
9
5

meters

5. (a) R = 1600000 + 20000n − 500n2, domain = {0, 1, 2, 3, . . . , 80}
(b) n = 20, $1800000

Exercise 2.5
1. (a) 5 (b) 3 (c) x2 + 2x + 2

(d) x2 + 2 (e) a4 + 2a2 + 2 (f) a + 2

2. (a) f (x) = x2 + 1, g(x) = x
1
2 (b) f (x) = x + 1, g(x) = x−1

Exercise 2.6
1. (a) Yes (b) No

2. (a) f −1(x) =
x + 2

3
(b) f −1(x) = (x − 3)

1
5

(c) f −1(x) =
(x − 1)7

128
(d) f −1(x) =

3

√
x3 + 1

2

Exercise 2.7
1. (a) {5±

√
33

2 } (b) {−1, 2} (c) {0}
(d) R \ {2,−2} (e) {2} (f) {5}
(g) ∅ (h) {4} (i) {1, 2}
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2. (a) P(q) = 8q − q2 − 12

(b) q = 2, 6

3. (a) 106 ft

(b) 51 mph

4. The sides are 3, 4, 5

Exercise 3.1
1. Same result, provided that the lengths tend to zero.
2. (a) Same result even for arbitrary point.

(b) Same result, provided that the lengths tend to zero.

Exercise 3.2
1. (a) 0 (b) 7

(c)
3
2

(d) ∞, does not exist

(e) 0 (f) Does not exist.

2. (a) (i) $51007.53 (ii) $51009.22

(b) $50000
(
1 +

1
50n

)n

(c) Limit exists, approximately $51010.07 (exact value is 50000e
1
50 ).

3. (a) Limit exists, approximately 2.718 (exact value is e).
(b) Limit exists, approximately 7.389 (exact value is e2).
(c) The limit is 1.

4. (a) Limit exists, the value is nonnegative.

Exercise 3.3
1. (a) 0 (b) 15

(c) 0 (d) ∞, does not exist
(e) 0 (f) 1
(g) ∞, does not exist (h) 1
(i) −1 (j) Does not exist

2. (a) 0 (b) The concentration will drop to 0 in the long run.
3. (a) 35000

(b)

20 40 60 80 100

34500

35000

35500

36000

36500

The population decreases from initial population 37500 to 35000.

4. (a) 0 (b)
1
2

(c) 0

Exercise 3.4
1. (a) 0 (b) ∞, does not exist.

(c) −∞, does not exist. (d) Does not exist.
(e) −∞, does not exist. (f) 2
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Exercise 3.5
1. (a) 6 (b) 216 (c)

25
49

(d)
1√
2

(e)
1
8

(f)
4
3

(g) 0 (h)
6
7

(i) ∞, does not exist.

(j) 0 (k)
1
4

(l) −3

2. (a) 4 (b) 3x2

(c) − 1
x2 (d)

1
2
√

x

Exercise 3.6
1. (a)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

(b) 2

2. (a) [0,∞) \ {1}
(b) −6
(c) Yes, define f (1) = −6.

3. (a) R − {0}
(b) Does not exist.
(c) No

4. (a) −1 < x < 2 or x > 2

5. (a) p(1) and p(2) have opposite signs
(b) Closer to one, the solution lies between 1 and 1.5

Exercise 4.1
1. (a) 4x (b) 3x2 − 3

(c) 4x3 (d) − 2
x3

Exercise 4.2
1. (a) 0 (b) 18x8 + 3 (c) 2x + 5

(d) 2x − 1 (e) 28 − 24x (f) 6x(x2 + 5)2

(g) −92x−5 (h) x−2 (i)
2

(x + 1)2

(j) 1 +
1
2

x−
1
2

2. (a) −1 (b) −11
8

(c) −1

(d) 8π − 1
2

(e) 18 (f) −6

(g) −10

3. (a) 72 (b) y = −1 (c) (−1,−1), (0, 2), (1,−1)
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4. (a) x cos x + sin x (b)
cos x
x + 1

− sin x
(x + 1)2

(c)
2x

sin x
− (x2 + 1) cos x

sin2 x
(d) x(x + 2) cos x + 2(x + 1) sin x

5. (c) n f (x)n−1 d
dx

f (x)

6. (a) 2(3x2 + 10x)(x3 + 5x2 − 2) (b) 6x(x2 + 5)2

Exercise 4.3
1. (a) 6x − 6 (b) −4 (c)

3
4

x−
1
2 − 1

4
x−

3
2

(d) 6x−4 − 4x−3 (e) 6x(5x3 + 2)

2. (a) 50 (b) −22 (c) 18

3. (a) a0, a1 (b) ann(n − 1) · · · 1, 0

Exercise 5.1
1. (a) [ 5

4 ,∞) (b) [−1, 1]

(c) (−∞,−7], [3,∞) (d) (−∞, −3−√13
2 ], [−3+

√
13

2 ,∞)

(e) [−2,−1], [2,∞) (f) (−∞,−2], [2,∞)

2. (a)
7
2

(local maximizer)

(b) 0 (neither),
3
2

(local minimizer)

(c) −3 (local maximizer), 0 (neither), 3 (local minimizer)
(d) −2 (local maximizer), 0 (local minimizer)

3. (a) none (b) (2,∞)

(c)
(
0, 4

5
)
, (1,∞) (d) (0,∞)

4. (a) −3
2

(b) 3

5. (a)

-2 2 4 6
-20

20

40
(b)

-1 1 2 3

-20

-10

10

(c)

-3 -2 -1 1 2 3

5

10

15

20
(d)

-2 -1 1 2
-5

5

10

Exercise 5.2
1. (a) minimum: −10, maximum: 82

(b) minimum: 0, maximum: 58

(c) minimum: −4, maximum:
17
16

2. 25, 25

3. x = 6, y = 3

4. 10 units by 10 units
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5. 100 m by 150 m

6. (2 + 2
√

6 ) in. by (3 + 3
√

6 ) in.

7.
3
4

s, maximum height = 14 ft.

8.
1
4

month, maximum height =
1
4

meter

9. Maximum profit: $30000, produce 1500 pieces, price for each piece: $200.

Exercise 6.1
1. (a) 0 (b) −6

2.
1
4

Exercise 6.2
1. (a)

x2

2
, yes (b) x, yes (c)

x6

6
, yes

(d) x2 + x, yes (e)
√

x, contained in (0,∞) (f)
2
3

x
3
2 , contained in [0,∞)

2.
x5

5
(a)

1
5

(b)
242

5
(c)

243
5

(d)
1701

5

Exercise 6.3
1. (a)

x6

3
+ C (b) 3x − 8

√
x + C

(c)
1
8

x8 − 3
2

x2 + 2x + C (d)
1
3

x3 − 2
3

x
3
2 + 3x + C

(e) − 4
3
√

x
+ C (f) −3

4
x4 +

17
3

x3 − 13
2

x2 + 2x + C

(g)
1
5

x5 − 2x3 + 9x + C (h) x − 1
x

+ C

2. (a)
81
2

(b) 0 (c) −30 (d)
42
5

(e)
84
5

(f) 22 (g)
18
√

2 − 12
5

(h) 12

Exercise 6.4
1. (a)

81
4

(b)
11
3

(c)
37
2

(d)
16
3

2. (a)
1
6

(b)
125

3
(c)

37
12

(d) 64

3.
1
3

x3 + x +
2
3

4.
1
12

x4 − 1
6

x3 − x2 +
1

12
x + 1

5.
3375

2
liters

Exercise 7.1
1. (a)

3π
2

(b)
7π
6

(c)
7π
4

(d)
25π

6

2. (a) 30◦ (b) 135◦ (c) 450◦ (d) 1260◦
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Exercise 7.2

1. (a)
√

3
2

(b) −1
2

(c) −√3

(d) − 1√
2

(e) − 1√
2

(f) 1

2. (a) 1 (b) 2

Exercise 7.3
1. (a) −5 sin x − 2 (b) −2 sec2 x

(c) cos x − 2x (d) x2 cos x + 2x sin x
(e) −2 sin x cos x (f) sin x sec2 x

(g) cos2 x − sin2 x (h)
−(x3 + 1) sin x − 3x2 cos x

(x3 + 1)2

(i) 2(x + cos x)(1 − sin x) (j) 2(cos2 x − sin2 x)

2. (a) 2 cos x sin x, 3 cos x sin2 x, 4 cos x sin3 x
(b) n cos x sinn−1 x

3. (a) 2 cos 2x, −2 sin 2x
(b) 3 cos 3x, −3 sin 3x
(c) n cos nx, −n sin nx

4. (a) a cos(ax + b), −a sin(ax + b)
(b) −a2 sin(ax + b), −a2 cos(ax + b)

(c) f (n)(x) =


(−1)

j−1
2 an cos(ax + b) if n = 4i + j, j = 1, 3,

(−1)
j
2 an sin(ax + b) if n = 4i + j, j = 2, 4.

g(n)(x) =


(−1)

j+1
2 an sin(ax + b) if n = 4i + j, j = 1, 3,

(−1)
j
2 an cos(ax + b) if n = 4i + j, j = 2, 4.

Exercise 8.1
1. (a)

-3 -2 -1 1 2 3

1

2

3

4

5

6

7 (b)

-2 -1 1 2

1

2

3

4

(c)

-3 -2 -1 1 2

-2

-1

1

2

3

4

5 (d)

-4 -2 2 4

1

2

3

4

5

6

7

8

red= 1st, green=2nd, blue=3rd
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2. (a) domain = R, range = (1,∞)
(b) domain = R, range = (0, 1)
(c) domain = R \ {0}, range = (−∞,−1) ∪ (0,∞)

3. (a) −1, 3 (b) −2 (c) no solution (d) 0, 2

Exercise 8.2
1. (a) log9 81 = 2 (b) log4 2 =

1
2

(c) log2
1
2

= −1

2. (a) 23 = 8 (b) 9
3
2 = 27 (c) e0 = 1

3. (a)
2
9

(b) 1

4. (a)

20 40 60 80 100

-1

-0.5

0.5

1

1.5

2
(b)

20 40 60 80 100

-2

-1

1

2

3

4

(c)

20 40 60 80 100

-2

-1

1

2

3

4

(d)

20 40 60 80 100

-4

-3

-2

-1

1

2

(e)

-100 -50 50 100

-2

-1

1

2

3

4 (f)

20 40 60 80 100

-2

-1

1

2

3

4

(g)

20 40 60 80 100

-1

-0.5

0.5

1

1.5

2

5. (a) domain = R, range = (1,∞)
(b) domain = R, range = [1,∞)
(c) domain = R − {0}, range = R

(d) domain = (0,∞), range = R

(e) domain =
(1

2 ,∞
)
, range = R

(f) domain = (−∞,−2) ∪ (2,∞), range = R

6. (a) {4} (b) {32} (c) {3}
(d) {1, 2} (e) {3} (f) {7}

7. (a) 2.09 (b) 8.64 (c) 2.69 × 10−14

(d) 1.02 (e) 4.71 (f) 1.99

8. (a) 30.81 years (b) 30.55 years (c) 30.50 years (d) 30.47 years
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Exercise 8.3
1. (a) 6x2 − 4ex (b)

1
x

(c) ex +
1
x

(d) 2x +
2
x

(e) ex +
1

2
√

x
(f)

1
2x

(g) ex(sin x + cos x) (h)
cos x

x
− sin x ln x

(i) (x + 1)2ex (j) x +
1
x

+ 2x ln x

(k) (sin x + cos x)ex sec2 x (l)
sin x − x ln x cos x

x sin2 x

(m) (8 − x3)e−x (n)
3x(x2 + 2x + 2) ln x − x3 − 3x2 − 6x + 2

x(ln x)2

2. (a) 1 (b)
1
2

3. (a) 2 − ex (b)
1
x2 −

2
x3

Exercise 9.1
1. (a) 12x11(2x + 5)5(3x + 5) (b)

2√
9 + 4x

(c)
4x

3
√

4x2 + 5
(d) −5 sin 5x

(e) 6 cos(6x − 7) (f) 4 sin3 x cos x

(g) −30 cos4(6x − 7) sin(6x − 7) (h) 12x cos 3x + 4 sin 3x

(i) 24x2 sec2(8x3 + 1) (j)
sec2 x
x + 2

− tan x
(x + 2)2

(k) 6e3x + 4 (l) (1 + 2x2)ex2

(m)
2x − x2

ex (n)
1
x

(o)
−2

5 − 2x
(p)

−2x
1 − x2

(q)
1

2x + 11
(r) 3 + 3 ln x

(s)
1

x ln x
(t)

ex2

x
+ 2xex2

ln x

(u) etan x sec2 x (v) ex sec2(ex)

(w) 5e5x cos(e5x) (x) 5esin 5x cos 5x

(y)
−8x sin[ln(4x2 + 9)]

4x2 + 9
(z) −8x tan(4x2 + 9)

2. (a) 2x2+2x ln 2
(b) xx(1 + ln x)

(c) (sin x)cos x−1 cos2 x − (sin x)cos x+1 ln(sin x)

(d)
−16x(2x + 1)(3x + 4)5

(x2 + 7)9 +
15(2x + 1)(3x + 4)4

(x2 + 7)8 +
2(3x + 4)5

(x2 + 7)8

3. (a) 0.4 + 0.002x ppm/thousand
(b) 25 thousand/year
(c) 30.8 ppm/year

4. (a) 24
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Exercise 9.2
1. (a)

2x − y2

2xy + 1
(b)

x2 − 2y
2x − y2

(c)
5x4 + 4y3

3y2(5y2 − 4x)
(d)

− sin y
2y + x cos y

(e)
cos(x + y) + y sin x
cos x − cos(x + y)

(f)
2x

ey − 2y

(g)
y(3x2 − ln y)

x + 2y2 (h)
1 − (x + y)(ey + y cos x)
(x + y)(xey + sin x) − 1

2. (a)
1
8

(b)
1
5

(c) −1

(d)
1
3

(e) −1 (f) 0

3. Decrease at the rate of 7.5 units per second.
4. Increase at the rate of 1280π cm3 per minute.

5.
2√
5

m/s

Exercise 9.3
1. (a)

-2 -1 1 2

0.2

0.4

0.6

0.8

1 (b)

-1 1 2 3 4

-1.5
-1.25
-1

-0.75
-0.5
-0.25

0.25
0.5

(c)

1 2 3 4 5

0.5

1

1.5

2

2.5

3

3.5

4 (d)

2 4 6 8 10 12 14

-0.2

-0.1

0.1

0.2

0.3

(e)

-10 -5 5 10

-10

-5

5

10
(f)

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1

(g)

-1 -0.5 0.5 1

-1

-0.5

0.5

1 (h)

-4 -2 2 4

0.2

0.4

0.6

0.8

1

Exercise 9.4
1.

√
2e−1

2. q = 20, price = 36.79, revenue = 735.76
3. (a) t = 12, N = 50

(b) t = 1, N ≈ 81
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4. (a) 1 km from A
(b) at A

5.
3

2
√

2
m

6.
π

3

Exercise 10.1
1. (a) 3 tan x + C (b) 2ex + sin x + C

(c) 2x + 3 ln |x| + C (d) x − 1
x

+ 2 ln |x| + C

2. (a) 1 (b) 2e − 2
e

(c)
1
e
− 1

e4 − ln 4 (d) ln 4 − 1

3. (a) 2 (b) 1 + ln 2 (c) 2 − e−1 − e−2

Exercise 10.2
1. (a)

1
10

(x2 + 1)10 + C (b)
2

15
(x5 + 6)

3
2 + C

(c) −1
2

cos x2 + C (d) −1
3

cos3 x + C

(e) ex2
+ C (f) tan(ex) + C

(g) −1
2

e−x2+1 + C (h)
1
3

ex3−1 + C

(i)
1
2

ln(x2 + 1) + C (j) cos
1
x

+ C

(k)
1
16

(x2 + 2x + 3)8 + C (l)
−1

40(x4 + 2x2 + 3)10 + C

(m)
1
5

(ex − 3x)5 + C (n) 2e
√

x + C

(o)
1
2

(ln |x + 1|)2 + C (p)
1
2

ln |2x + 7| + C

(q)
1

16
(x + 1)16 + C (r)

2
3

(x − 2)
√

x + 1 + C

(s)
1
17

(x + 1)17 − 1
16

(x + 1)16 + C (t) ex+ 1
x + C

2. (a)
21
4

(b)
1
2

(e2 − e) (c)
1
3

sin 1

(d)
1
2

(ln 7 − ln 3) (e) e − 1 (f) 2

(g)
−122

5
(h) ln 2 (i)

1
72

(j)
40
3

3. (a) 1 (b)
1
2

(e − 2)



Appendix B

Supplementary Notes

B.1 Mathematical Induction

Consider the following formula

1 + 2 + 3 + · · · + n =
n(n + 1)

2
. (B.1.1)

Note that (B.1.1) involves n (positive integer). If we denote the equality by P(n), then the statement “P(n) is
true for all positive integers n” means that “P(1) is true, P(2) is true, P(3) is true, and so on”. One way to proof
this is to use mathematical induction.

Principle of Mathematical Induction Let P(n) be a statement involving a positive integer variable n. Suppose
that the following two conditions hold:

(I) P(1) is true;

(II) P(k + 1) is true whenever P(k) is true.

Then P(n) is true for all positive integers n.

The above principle is easy to understand because (I) together with (II) implies that P(2) is true which in
turn together with (II) implies that P(3) is true, and so on. To prove the principle rigorously, we have to use a
property of natural numbers, namely, the well ordering property. This concept is discussed in more advanced
books on sets.

Example Use mathematical induction to show that (B.1.1) is true for all positive integers n.

Proof Denote (B.1.1) by P(n).

(I) When n = 1, we have

L.S . = 1 and R.S . =
(1)(2)

2
= 1.

Therefore P(1) is true.

(II) Suppose that P(k) is true, that is,

1 + 2 + 3 + · · · + k =
k(k + 1)

2
. (B.1.2)
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Then we have

1 + 2 + 3 + · · · + k + (k + 1) =
k(k + 1)

2
+ (k + 1) By (B.1.2)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2

=
(k + 1)[(k + 1) + 1]

2
that is, P(k + 1) is true.

Thus by the Principle of Mathematical Induction, P(n) is true for all positive integers n. �

Example Use mathematical induction to show that the following is true for all positive integers n:

12 + 22 + 32 + · · · + n2 =
n(n + 1)(2n + 1)

6
. (B.1.3)

Proof Denote (B.1.3) by P(n).

(I) When n = 1, we have

L.S . = 1 and R.S . =
(1)(2)(3)

6
= 1.

Therefore P(1) is true.

(II) Suppose that P(k) is true, that is,

12 + 22 + 32 + · · · + k2 =
k(k + 1)(2k + 1)

6
. (B.1.4)

Then we have

12 + 22 + 32 + · · · + k2 + (k + 1)2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2 By (B.1.4)

=
k(k + 1)(2k + 1) + 6(k + 1)2

6

=
(k + 1)[k(2k + 1) + 6(k + 1)]

6

=
(k + 1)(2k2 + 7k + 6)

6

=
(k + 1)(k + 2)(2k + 3)

6

=
(k + 1)[(k + 1) + 1][(2(k + 1) + 1]

6

that is, P(k + 1) is true.

Thus by the Principle of Mathematical Induction, P(n) is true for all positive integers n. �

Example Use mathematical induction (together with the product rule) to prove the power rule for positive
integers n:

d
dx

xn = nxn−1 (B.1.5)

Proof Denote (B.1.5) by P(n).
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(I) P(1) is true since
d
dx

x = 1 = x0 (by the convention for the function x0).

(II) Suppose that P(k) is true, that is,
d
dx

xk = kxk−1. (B.1.6)

Then we have
d
dx

xk+1 =
d
dx

(xk · x)

= x · d
dx

xk + xk · d
dx

x Product Rule

= x · kxk−1 + xk · 1 By (B.1.6)

= kxk + xk

= (k + 1)x(k+1)−1

that is, P(k + 1) is true.

Thus by Principle of Mathematical Induction, P(n) is true for all positive integers n. �

B.2 Binomial Theorem

Before considering the Binomial Theorem, we introduce the notations n! and
(
n
k

)
.

Consider a collection of three objects a, b and c. There are 6 permutations of the three objects:

abc acb
bac bca
cab cba

Instead of writing down all the permutations, we can find the number of permutations as follows.

• Note that there are 3 choices for the first object. Once the first one is fixed, there are two choices for the
second object. Once the first and second objects are fixed, the third one is determined. Thus the number
of permutations is 3 × 2 × 1.

In general, given a collection of n objects, the number of permutations of the n objects is

n · (n − 1) · (n − 2) · · · 3 · 2 · 1.

Notation Let n be a positive integer. We denote n! (read “n factorial”) to be the product of the first n positive
integers, that is,

n! = n(n − 1)(n − 2) · · · 3 · 2 · 1
By convention, 0! is defined to be 1.

Example 5! = 5 × 4 × 3 × 2 = 120.

Let A be the set having 5 elements a, b, c, d and e. The 2-element subsets of A are

{a, b} {a, c} {a, d} {a, e} {b, c} {b, d} {b, e} {c, d} {c, e} and {d, e}.

Instead of writing down all the 2-element subsets, we can find the number of such subsets as follows.
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• First we consider ordered pairs of distinct elements of A:

(a, b), (a, c), . . . (a, e), (b, a), . . . (b, e), (e, a), . . . (e, d).

There are 5 choices for the first element and 4 choices for the second element.

• However for sets, {a, b} and {b, a} are equal. So the number of 2-element subsets of A is

5 × 4 ÷ 2.

In general, given a set A with n elements, the number of k-element subsets of A can be found as follows:

• First we consider ordered k-tuples of distinct elements of A:

(x1, . . . , xk) where xi ∈ A and xi , x j if i , j.

There are n choices for the first element, (n − 1) choices for the second element, (n − 2) choices for the
third element and so on such that the number of choices for the k-th element is (n − k + 1). Hence the
number of ordered k-tuples of distinct elements of A is

n(n − 1)(n − 2) · · · (n − k + 1).

• However for sets, {x1, x2, x3, . . . , xk} and {x2, x1, x3, . . . , xk} are equal. In fact, given an ordered k-tuple
{x1, x2, . . . , xk} of distinct elements of A, the sets formed by taking any permutation of the elements
x1, . . . , xk are the same. So the number of k-element subsets of A is

n(n − 1)(n − 2) · · · (n − k + 1) ÷ k!.

Note that
n(n − 1)(n − 2) · · · (n − k + 1)

k!
=

n(n − 1)(n − 2) · · · (n − k + 1) × (n − k)(n − k − 1) · · · 2 · 1
k! × (n − k)(n − k − 1) · · · 2 · 1

=
n!

k! (n − k)!

Notation Let n be a natural number (positive integer or zero) and let k be a natural number not greater than n.
We denote (

n
k

)
=

n!
k! (n − k)!

Example
(
5
3

)
=

5!
3! · 2!

=
5 · 4

2
= 10 and

(
5
2

)
=

5!
2! · 3!

= 10.

Remark
(
n
k

)
is the number of combinations that k objects can be chosen from a collection of n objects.

Example
(
n
0

)
=

n!
0! n!

= 1
(
n
n

)
=

n!
n! (n − n)!

= 1

(
n
1

)
=

n!
1! (n − 1)!

= n
(

n
n − 1

)
=

n!
(n − 1)! (n − (n − 1))!

= n

(
n
2

)
=

n!
2! (n − 2)!

=
n (n − 1)

2

(
n

n − 2

)
=

n!
(n − 2)! (n − (n − 2))!

=
n (n − 1)

2
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Note
(
n
k

)
=

(
n

n − k

)

The following result will be used in the proof of the Binomial Theorem.

Lemma B.2.1 Let n be a positive integer and let k be a positive integer not greater than n. Then we have
(
n
k

)
+

(
n

k − 1

)
=

(
n + 1

k

)

Proof
(
n
k

)
+

(
n

k − 1

)
=

n!
k! (n − k)!

+
n!

(k − 1)! (n − (k − 1))!

=
n!

k! (n − k)!
+

n!
(k − 1)! (n − k + 1)!

=
n! · (n − k + 1) + n! · k

k! (n − k + 1)!

=
n! · (n + 1)

k! (n − k + 1)!

=
(n + 1)!

k! (n + 1 − k)!

=

(
n + 1

k

)

�

Binomial Theorem Let a and b be real numbers. Then for every positive integer n, we have

(a + b)n =

n∑

k=0

(
n
k

)
an−kbk (B.2.1)

where by convention 00 means 1 if a = 0 or b = 0.

Note
n∑

k=0

(
n
k

)
an−kbk =

(
n
0

)
anb0 +

(
n
1

)
an−1b1 +

(
n
2

)
an−2b2 + · · · +

(
n

n − 2

)
a2bn−2 +

(
n

n − 1

)
a1bn−1 +

(
n
n

)
a0bn

= an + nan−1b +
n(n − 1)

2
an−2b2 + · · · + n(n − 1)

2
a2bn−2 + nabn−1 + bn

Proof Denote (B.2.1) by P(n).

(I) When n = 1, we have

L.S . = (a + b)1 = a + b and R.S . =

1∑

k=0

(
1
k

)
a1−kbk = a1b0 + a0b1 = a + b.

Thus L.S . = R.S . and so P(1) is true.

(II) Suppose that P(N) is true, that is

(a + b)N =

N∑

k=0

(
N
k

)
aN−kbk. (B.2.2)
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Then we have

(a + b)N+1 = (a + b)N · (a + b)

= (a + b)
N∑

k=0

(
N
k

)
aN−kbk By B.2.2

=

N∑

k=0

(
N
k

)
aN−k+1bk +

N∑

k=0

(
N
k

)
aN−kbk+1

=

N∑

k=0

(
N
k

)
aN−k+1bk +

N+1∑

k=1

(
N

k − 1

)
aN−(k−1)b(k−1)+1 Replace k by k − 1 and

shift summation index

= aN+1 +

N∑

k=1

[(
N
k

)
+

(
N

k − 1

)]
aN−k+1bk + bN+1

= aN+1 +

N∑

k=1

(
N + 1

k

)
aN−k+1bk + bN+1 By Lemma B.2.1

=

N+1∑

k=0

(
N + 1

k

)
aN+1−kbk

That is, P(N + 1) is true.

Hence by the Principle of Mathematical Induction, P(n) is true for all positive integers n. �

B.3 Mean Value Theorem

Mean Value Theorem Let f be a function that is continuous on [a, b] and differentiable on (a, b), where
a, b ∈ R and a < b. Then there exists ξ ∈ (a, b) such that

f ′(ξ) =
f (b) − f (a)

b − a
.

Explanation The conclusion means that there always exists (at least) a point C =
(
ξ, f (ξ)

)
on the graph of f ,

between A =
(
a, f (a)

)
and B =

(
b, f (b)

)
, such that the slope at C equals to the slope of the line AB.

Before giving the proof for the Mean Value Theorem, we prove a special case of the result.

Rolle’s Theorem Let g be a function that is continuous on [a, b] and differentiable on (a, b), where a, b ∈ R
and a < b. Suppose that g(a) = g(b). Then there exists ξ ∈ (a, b) such that

g′(ξ) = 0.
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Proof We may assume that g(a) = g(b) = 0; otherwise, we can replace g by g1 where g1(x) = g(x) − g(a).

(Case 1) g is identically zero on [a, b]

In this case, g′(x) = 0 for all x ∈ (a, b). So any ξ ∈ (a, b) satisfies the requirement.

(Case 2) g is not identically zero on [a, b]

By the Extreme Value Theorem, g attains its maximum and minimum in [a, b], that is, there exists ξ1 and
ξ2 in [a, b] such that

g(ξ1) ≤ g(x) ≤ g(ξ2) for all x ∈ [a, b].

Since g is not identically zero on [a, b], it follows that at least one of ξ1, ξ2 is not an endpoint of [a, b].
Hence there exists ξ ∈ (a, b) such that g has a local maximum or minimum at ξ. Therefore, by Theo-
rem 5.1.3, we have g′(ξ) = 0.

�

Proof of the Mean Value Theorem Instead of working on f , we construct an auxiliary function g so that Rolle’s
Theorem can be applied to g and the conclusion for g is what we want for f .

Let g : [a, b] −→ R be the function defined by

g(x) = f (x) − f (a) − f (b) − f (a)
b − a

(x − a) for x ∈ [a, b].

Note that g is continuous on [a, b] and differentiable on (a, b) with

g′(x) = f ′(x) − f (b) − f (a)
b − a

for x ∈ (a, b).

Moreover, we have g(b) = g(a) = 0. Hence by Rolle’s Theorem, there exists ξ ∈ (a, b) such that g′(ξ) = 0, or
equivalently that

f ′(ξ) =
f (b) − f (a)

b − a
.

�

Remark If f is a function that is differentiable on an open interval I, then for every x1, x2 ∈ I with x1 < x2, the
function f is continuous on [x1, x2] and differentiable on (x1, x2) and so we can apply the Mean Value Theorem
to f with a = x1 and b = x2.

Below we apply the Mean Value to prove the following result which is Theorem 5.1.1.

Theorem B.3.1 Let f be a function that is defined and differentiable on an open interval (a, b).

(1) If f ′(x) > 0 for all x ∈ (a, b), then f is increasing on (a, b).

(2) If f ′(x) < 0 for all x ∈ (a, b), then f is decreasing on (a, b).
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(3) If f ′(x) = 0 for all x ∈ (a, b), then f is constant on (a, b), that is, f (x1) = f (x2) for all x1, x2 ∈ (a, b), or
equivalently, there exists a real number c such that f (x) = c for all x ∈ (a, b).

Proof We give the proof for (1) and (3). The proof for (2) is similar to that for (1). Alternatively, to prove (2),
we may apply (1) to the function − f .

(1) Suppose that f ′(x) > 0 for all x ∈ (a, b). Let x1, x2 ∈ (a, b) where x1 < x2. By the Mean Value Theorem,
there exists ξ ∈ (x1, x2) ⊆ (a, b) such that

f ′(ξ) =
f (x2) − f (x1)

x2 − x1
.

Therefore, we have
f (x2) − f (x1) = (x2 − x1) f ′(ξ) > 0,

which implies that f (x1) < f (x2).

(3) Suppose that f ′(x) = 0 for all x ∈ (a, b). From the proof of (1), we see that for every pair of x1, x2 in
(a, b), there exists ξ ∈ (a, b) such that

f (x2) − f (x1) = (x2 − x1) f ′(ξ) = 0.

which implies that f (x1) = f (x2). Thus f is a constant function.
�

B.4 Fundamental Theorem of Calculus

Before giving the proof of the Fundamental Theorem of Calculus (Version 1), we need some preliminary results.

Lemma B.4.1 Let f and g be functions that are continuous on a closed and bounded interval [a, b]. Suppose
that f (x) ≤ g(x) for all x ∈ [a, b]. Then we have

∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx.

Proof By definition, we have
∫ b

a
(g − f )(x) dx = lim

n→∞

n∑

i=1

(g − f )(xi−1) · b − a
n
, where xi = a +

i
n

(b − a) for 0 ≤ i ≤ n.

The condition on f and g implies that each term in the above sum is non-negative. Hence we have
∫ b

a
(g − f )(x) dx ≥ 0.

The required inequality then follows from Rules for Definite Integral (Int1) and (Int2). �

Corollary B.4.2 Let f be a function that is continuous on a closed and bounded interval [a, b]. Suppose that m
and M are real numbers such that m ≤ f (x) ≤ M for all x ∈ [a, b]. Then we have

m(b − a) ≤
∫ b

a
f (x) dx ≤ M(b − a).
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Proof By Lemma B.4.1, we have
∫ b

a
m dx ≤

∫ b

a
f (x) dx ≤

∫ b

a
M dx.

The required inequalities then follow from Definite Integral for Constant. �

The next result is known as the Mean Value Theorem for Definite Integral.

Theorem B.4.3 Let f be a function that is continuous on a closed and bounded interval [a, b]. Then there
exists ξ ∈ [a, b] such that ∫ b

a
f (x) dx = f (ξ) · (b − a).

Proof By the Extreme Value Theorem, there exist x1, x2 ∈ [a, b] such that

f (x1) ≤ f (x) ≤ f (x2) for all x ∈ [a, b].

By considering the constant functions f (x1) and f (x2) on the interval [a, b] and applying Corollary B.4.2, we
get

f (x1) · (b − a) ≤
∫ b

a
f (x) dx ≤ f (x2) · (b − a),

which yields

f (x1) ≤
∫ b

a f (x) dx

b − a
≤ f (x2).

By the Intermediate Value Theorem, there exists ξ between x1 and x2 such that

f (ξ) =

∫ b
a f (x) dx

b − a
.

Hence the required result follows. �

Fundamental Theorem of Calculus, Version 1 Let f be a function that is continuous on a closed and bounded
interval [a, b]. Let F be the function from [a, b] into R defined by

F(x) =

∫ x

a
f (t) dt for a ≤ t ≤ b.

Then F is continuous on [a, b] and differentiable on (a, b) with F′(x) = f (x) for all x ∈ (a, b).

Proof We divide the proof into two parts: continuity and differentiability.

(Continuity) By the Extreme Value Theorem, there exist real numbers m and M such that

m ≤ f (x) ≤ M for all x ∈ [a, b]. (B.4.1)

Let x1, x2 ∈ [a, b] with x1 < x2. By the construction of F together with Rule for Definite Integral (Int3),
we have

F(x2) − F(x1) =

(∫ x1

a
f (t) dt +

∫ x2

x1

f (t) dt
)
−

∫ x1

a
f (t) dt

=

∫ x2

x1

f (t) dt
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which, by (B.4.1) and Corollary B.4.2, yields

m(x2 − x1) ≤ F(x2) − F(x1) ≤ M(x2 − x1). (B.4.2)

For every α ∈ (a, b), putting x1 = α and x2 = x, by (B.4.2) and the Sandwich Theorem, we see that

lim
x→α+

(
F(x) − F(α)

)
= 0,

that is, lim
x→α+

F(x) = F(α); similarly putting x2 = α and x1 = x, we see that

lim
x→α− F(x) = F(α);

hence we have lim
x→α F(x) = F(α), that is, F is continuous at α. Similarly, the function F is left-continuous

at a and right-continuous at b. Therefore F is continuous on [a, b].

(Differentiability) Let x ∈ (a, b). We want to show that

lim
h→0

F(x + h) − F(x)
h

= f (x).

For this, we consider left-side and right-side limits.

For h > 0, by the construction of F together with Rule for Definite Integral (Int3), we have

F(x + h) − F(x) =

∫ x+h

x
f (t) dt.

Hence by Theorem B.4.3, there exists ξh ∈ [x, x + h] such that

F(x + h) − F(x) = f (ξh) · ((x + h) − x
)

= f (ξh) · h.
Note that as h tends to 0 from the right, the number ξh tends to x (from the right). Therefore, we have

lim
h→0+

F(x + h) − F(x)
h

= lim
h→0+

f (ξh) = f (x) (B.4.3)

by the continuity of f .

For h < 0, by the construction of F together with Rule for Definite Integral (Int3), we have

F(x) − F(x + h) =

∫ x

x+h
f (t) dt.

Hence by Theorem B.4.3, there exists ξh ∈ [x + h, x] such that

F(x) − F(x + h) = f (ξh) · (x − (x + h)
)

= f (ξh) · (−h).

Note that as h tends to 0 from the left, the number ξh tends to x (from the left). Therefore, we have

lim
h→0−

F(x + h) − F(x)
h

= lim
h→0−

f (ξh) = f (x) (B.4.4)

by the continuity of f .

Combining (B.4.3) and (B.4.4), we get

lim
h→0

F(x + h) − F(x)
h

= f (x)

as required.
�

Remark Rule for Definite Integral (Int3) can be proved using a property of continuous functions on closed and
bounded interval, namely, uniform continuity. This concept is discussed in more advanced calculus or analysis.
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e, 198

absolute maximum, 146
absolute minimum, 146
absolute value function, 60
absolute value of number, 60
angle, 179

degree, 179
idea of definition, 179
initial side, 179
radian, 180
standard position, 179
terminal side, 179
vertex, 179

antiderivative, 167
axes

x-axis, 13
y-axis, 13

axis of symmetry, 19

base, 1
belong to, 24
bending down, 136

bending up, 136
binomial theorem, 112, 273
bounded interval, 33

Cartesian plane, 13
cast rule, 182
chain rule, 207
change of base formula, 197
circle

center, 18
equation, 18
radius, 18

closed and bounded interval, 33
closed interval, 33
codomain of function, 43
combination, 272
common logarithm, 197
common logarithmic function, 58
compare coefficient method, 9
complement of set, 29
composition of functions, 64
compound angle formulas, 185
concave function, 137
constant, 4
constant function, 53
constant of integration, 168
consumer surplus, 248
continuous

at point, 94
on closed and bounded interval, 99
on half-open-half closed interval, 98
on open interval, 96

continuous random variable, 250
convergent, 76
convex function, 137
convexity, 136
coordinates

x-coordinate, 13
y-coordinate, 13

cosecant function, 181
cosine function, 59, 180
cotangent function, 181
critical number, 131
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critical point, 131

decreasing function, 128
definite integral, 158

for constant function, 160
lower limit of integration, 162
rules for, 160
upper limit of integration, 162

degenerate interval, 34
dependent variable, 43
derivative, 107

higher-order, 123
difference quotient, 93
differentiable

at point, 105
on open interval, 106

differentiable function, 107
differential, 109, 233
differentiation, 109

rules for, 110
discontinuous

at point, 94
discrete random variable, 250
discriminant of quadratic equation, 7
distance formula, 17
domain of function, 43
dummy variable, 159

element of set, 23
empty interval, 34
empty set, 24
equality of sets, 25
equation

exponential, 199
fractional, 69
graph of, 50
logarithmic, 199
radical, 69

equation in one unknown, 4
linear, 4
quadratic, 6
solution to, 4

equation in two unknowns, 12
graph of, 13
linear, 12
solutions to, 12

equation of circle, 18
equivalent equations, 4
even function, 181
event

continuous random variable, 251
discrete random variable, 251

exponent, 1
rules for, 1, 36, 192

exponential function, 191
base b, 57
base of, 191
graph of, 192
the exponential function, 194

extreme value theorem, 101
extremum

absolute, 146
global, 146

factor theorem, 8
factorial, 271
first derivative test, 134
fractional equation, 69
function, 43

(strictly) concave, 137
(strictly) convex, 137
(strictly) decreasing, 128
(strictly) increasing, 128
antiderivative for, 167
attain (global/absolute) maximum, 146
attain (global/absolute) minimum, 146
codomain of, 43
composition of, 64
derivative of, 107
domain of, 43
graph of, 53
has relative maximum, 132
has relative minimum, 132
image of element, 43
image of set, 46
indefinite integral of, 168
informal definition, 43
injective, 66
inverse, 67
natural domain of, 45
primitive for, 164
range of, 46
two variables, 49

function of two variables, 49
fundamental theorem of calculus, 162

version 1, 163
version 2, 165
version 3, 176

general linear form for line, 13
general power rule, 213
global maximum, 146
global minimum, 146
graph of equation in two unknowns, 13, 50
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graph of function, 53
graph of inverse function, 69

higher-order derivative, 123
second derivative, 123
third derivative, 123

horizontal line test, 66

identity, 2
identity function, 111
iff, 5
image of element, 43
image of set, 46
implication

one-sided, 69
two-sided, 69

implicit differentiation, 215
imply, 5
improper integral, 251
increasing function, 128
indefinite integral, 167

constant of integration, 168
integrand, 168

independent variable, 43
indeterminate form, 91
index, 35
inequality

polynomial, 37
quadratic, 38
rules for, 11

inequality in one unknown, 11
linear, 11
solution to, 11

infinite limit, 84
infinity, 33
inflection number, 139
inflection point, 139
injective, 66
integer, 32
integral sign, 159
integrand, 162, 168
integrate, 168
integration, 157

constant function, 168
constant multiple rule, 170
power rule (n + 1

2 version), 170
power rule (negative integer version), 169
power rule (positive integer version), 169
sum rule, 171
term by term integration, 171

integration formulas, 229
integration technique

u-substitution, 236
for rational function, 240
integration by parts, 246
linear change of variable, 236
partial-fraction decomposition, 241
substitution method, 232
substitution method for definite integral, 237

intercept, 50
x-intercept, 50
y-intercept, 50

interest compounded continuously, 194
intermediate value theorem, 99
intersection of sets, 28
interval, 33

bounded, 33
closed, 33
closed and bounded, 33
degenerate, 34
empty, 34
open, 33
unbounded, 33

inverse function, 67
graph of, 69

inverse function rule, 203
inverse function theorem, 203
irrational number, 32

leading term rule, 83
left-continuous at point, 98
left-sided limit, 88
lie between, 99
limit of function

at infinity, 80
at negative infinity, 85
at point, 89
left-sided limit at point, 88
one-sided limit at point, 86
right-sided limit at point, 87

limit of integration, 162
lower limit, 162
upper limit, 162

limit of sequence, 76
line, 13

x-intercept, 14
y-intercept, 14
equation for, 15
general linear form, 13
parallel, 16
perpendicular, 16
point-slope form, 15
slope of, 15
slope-intercept form, 16
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linear equation in one unknown, 4
linear equation in two unknowns, 12
linear function, 53
local extremizer, 132
local extremum point, 132
local maximizer, 132
local maximum point, 132
local minimizer, 132
local minimum point, 132
logarithm

common logarithm, 197
natural logarithm, 197
properties of, 197

logarithmic differentiation, 213
logarithmic function, 196

base of, 196
graph of, 196
natural logarithmic function, 197

marginal cost, 153
marginal revenue, 153
mathematical induction, 269
maximal interval

on which function is decreasing, 129
on which function is increasing, 129

maximum, 146
absolute, 146
global, 146
value, 146

mean value theorem, 274
mean value theorem for definite integral, 277
member of set, 23
minimum, 146

absolute, 146
global, 146
value, 146

minus infinity, 33

natural domain of function, 45
natural logarithm, 197
natural number, 25, 32
net change theorem, 177

odd function, 181
one-sided limit, 86
open interval, 33
opposite signs, 100
ordered pair, 12
origin, 13

parabola, 19
axis of symmetry, 19

equation of, 19
vertex of, 19

partial-fraction, 241
partial-fraction decomposition, 241

compare coefficient method, 241
substitution method, 241

period, 59
periodic, 59
permutation, 271
piecewise-defined function, 60
point-slope form for line, 15
polynomial function, 54
polynomial inequality, 37
power function, 111
power rule

n + 1
2 version, 120

general, 213
negative integer version, 118
positive integer version, 111

primitive, 164
principal qth root, 35
principle of mathematical induction, 269
principle-square-root function, 55
probability function

continuous random variable, 251
discrete random variable, 250

probability of event
continuous random variable, 252
discrete random variable, 251

producer surplus, 248
product rule, 116
proof by definition, 27
Pythagorus theorem, 17

quadratic equation, 6
discriminant, 7
factorization method, 6
quadratic formula, 7

quadratic function, 53
quadratic inequality, 38
quotient rule, 117

radian, 180
radical, 34

index, 35
radicand, 35

radical equation, 69
radicand, 35
radioactive decay, 195

decay constant, 195
half-life, 195

random variable
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continuous, 250
discrete, 250

range of function, 46
rational function, 54
rational number, 25
real number, 32

algebraic operation, 33
binary relation, 33
negative, 33
positive, 33
real number line, 33

rectangular coordinate plane, 13
related rates, 218
relative complement, 29
relative extremizer, 132
relative extremum point, 132
relative maximizer, 132
relative maximum point, 132
relative maximum value, 132
relative minimizer, 132
relative minimum point, 132
relative minimum value, 132
remainder theorem, 8
Riemann sum, 158
right-continuous at point, 98
right-sided limit, 87
Rolle’s theorem, 274
root

qth root of, 34
principal qth root of, 35

rules for
limit of function at infinity, 81
limit of function at point, 90
limit of sequence, 77

rules for definite integral, 160
rules for differentiation, 110

chain rule, 207
constant multiple rule, 113
derivative of arctangent function, 205
derivative of constant, 110
derivative of cosine, 187
derivative of exponential function, 213
derivative of identity function, 111
derivative of logarithmic functions, 203
derivative of natural logarithmic function, 201
derivative of polynomial, 116
derivative of sine, 187
derivative of square root function, 119
derivative of tangent, 187
derivative of the exponential function, 204
general power rule, 213

inverse function rule, 203
power rule (n + 1

2 version), 120
power rule (negative integer version), 118
power rule (positive integer version), 111
product rule, 116
quotient rule, 117
sum rule, 114
term by term differentiation, 114

rules for exponent, 1, 36, 192
rules for inequalities, 11

same sign, 11
sandwich theorem, 84
secant function, 181
second derivative, 123
second derivative test, 141
second derivative test (special version), 150
sequence, 75

nth term, 75
convergent, 76
limit, 76
of real numbers, 75

set, 23
complement, 29
description method, 24
element of, 23
empty, 24
equal, 25
idea of definition, 23
intersection, 28
listing method, 23
member of, 23
not subset of, 27
operation, 28
relative complement, 29
subset of, 27
unequal, 27
union, 28
universal, 29

sine function, 59, 180
slope function, 107
slope of a line, 15
slope of curve at point, 104
slope-intercept form for line, 16
solution set to equation, 7
solution set to inequality in one unknown, 37
solution to

equations in two unknowns, 12
equation in one unknown, 4
inequality in one unknown, 11

square-root function, 56
stationary number, 131
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step function, 63
strictly concave function, 137
strictly convex function, 137
strictly decreasing function, 128
strictly increasing function, 128
subset, 27
substitution method, 234
sum of squares formula, 75
symmetric

about x-axis, 51
about y-axis, 51
about line, 51
about origin, 51
about point, 51

symmetric about line
two subsets, 57

symmetry, 51
system of two equations in two unknowns, 20
system of two linear equations in two unknowns, 20

elimination method, 20
substitution method, 21

tangent function, 60, 181
tangent to curve at point, 104
third derivative, 123
trigonometric function, 58
twice differentiable on open interval, 127
two subsets symmetric about line, 57
two-sided limit, 89

unbounded interval, 33
union of sets, 28
unit circle, 180

the unit circle, 180
universal set, 29

Venn diagram, 30
vertex of parabola, 19


